Как устроен системный блок компьютера. Системный блок Как выглядит системный блок внутри


Хотите научиться разбираться в компьютерных комплектующих без помощи специалистов и проводить усовершенствование своего компьютера самостоятельно? Для этого вам понадобятся базовые знания внутреннего устройства ПК, которые вы получите, прочитав эту статью.

В эпоху 90-х, когда рынок персональных компьютеров в России только начинал зарождаться, те немногие фирмы, осуществлявшие продажу компьютерной техники, в основном предлагали покупателям уже собранные системные блоки. Собирались они в большинстве своем, там же в офисе, на «коленках», под заказ покупателя из комплектующих, что бог послал, а качество этой самой пресловутой сборки напрямую зависело от прямых рук сборщика. Но разве в то время на это кто-то обращал внимание? Брендовых решений на рынке практически не было, а даже такой кустарный вариант домашнего компьютера был явлением редким и очень дорогим.

На рубеже веков ситуация в компьютерной индустрии кардинально изменилась. Активное развитие IT-технологий привело к бурному росту высокотехнологичного производства в Азии. На рынок хлынул большой поток всевозможных комплектующих и периферии, создав условия здоровой конкуренции, которая привела к существенному снижению цен на компьютерное железо, а это в свою очередь дало мощный толчок к массовому распространению ПК. Компьютерные магазины стали плодиться как грибы, привлекая покупателей все новыми видами услуг, среди которых, одной из самых популярных, была сборка ПК на заказ. Суть ее заключалась в том, что покупатель сам выбирал комплектующие для своего будущего компьютера и уже через час, полтора забирал его из магазина в собранном виде.

Наиболее же продвинутые пользователи пошли еще дальше. Именно в этот период стала активно практиковаться сборка системного блока своими руками, благо всевозможных сопутствующих этой тематике изданий было достаточно. Такой способ обзавестись вожделенным домашним компьютером был существенно дешевле, чем покупка готового решения (как минимум не надо было платить за сборку). Еще одним плюсом «самосбора» является возможность подобрать комплектующие определенного производителя и качества, не привязываясь к ассортименту одного магазина. Собрав компьютер самостоятельно, в дальнейшем можно было беспрепятственно осуществлять его апгрейд (усовершенствование) или просто заменять/добавлять какие-либо комплектующие не боясь потери гарантии, так как она в таком случае была на каждую деталь по-отдельности. А вот при покупке готового «системника» все комплектующие внутри него опечатывались стикерами, надрыв которых, как правило, был поводом для отказа вам в исполнении гарантийных обязательств, в случае возникновения каких-либо неисправностей.

В последнее время вопрос сборки компьютера своими руками как-то отходит на задний план. Во-первых, частично виной тому является массовое распространение ноутбуков, нетбуков и моноблоков, мобильность которых в глазах многих пользователей предпочтительнее громоздких десктопов. А во-вторых, в нынешнее время готовые решения вместе с предустановленной операционной системой сейчас зачастую стоят дешевле, чем «самосбор» и отдельная коробка с ОС. Особенно это касается, наиболее массовых, нижнего и среднего сегментов рынка.

Так нужно ли вообще современному пользователю компьютерной техники знание ее внутренностей? Для того, чтобы ответить на этот вопрос, я приведу несколько ситуаций, в которых знание устройства ПК, на мой взгляд, вам бы сильно пригодилось:

- Самостоятельная покупка нового компьютера. Думаю, то, что это достаточно ответственный момент, объяснять не надо. И если вы не хотите быть обманутым или как минимум разочарованным своей будущей покупкой, то хотя бы поверхностные знания начинки компьютера категорически рекомендуются. Помните, что фразы: «Мне нужен компьютер для интернета, просмотра фильмов, прослушивания музыки и что бы поиграть иногда» явно не достаточно для продавца, что бы он смог подобрать для вас оптимальное решение. Как правило, таким требованиям будет удовлетворять достаточно большое количество предложений и выбирать из них, в таком случае, получается, будет продавец-консультант, а не вы. А раз так, вы сильно рискуете приобрести то, что совершенно не будет соответствовать вашим ожиданиям.

Наверняка перед покупкой, у вас будет желание изучить текущие цены на компьютерную технику, чтобы хотя бы приблизительно понимать, какие затраты вас ожидают. Предварительно изучая ассортимент готовых решений в магазине, на ценниках, в прайс-листах или интернет каталогах, название тех или иных устройств скорее всего вам будет представлены например в следующем виде:

Системный блок Core i5-2310/S1155/H61/4Gb DDR3-1333/1024Mb HD6770/HDD 500Gb-7200-16Mb/DVD+-RW/Sound 7.1/GLAN/ATX 450W

Ноутбук15.6”/i7-2630QM(2.00)/4Gb/GTX460M-1Gb/750Gb/DVD-RW/WiFi/BT/Cam/W7HP64

Если вы еще не знакомы с внутренним устройством компьютера, то я практически уверен, что в этих названиях, содержащих важнейшие характеристики устройств, вы ровным счетом ничего не поняли. Дочитав эту статью до конца, вы спокойно сможете понять, что же означает эта абракадабра.

Самостоятельный апгрейд и покупка комплектующих (усовершенствование компьютера путем добавления или частичной замены деталей компьютера). В полной мере эта возможность применима только к системным блокам, так как в мобильных устройствах возможности апгрейда ограничиваются лишь двумя подсистемами: оперативной памятью и жестким диском. Поэтому при покупке ноутбуков, нетбуков или моноблоков необходимо сразу четко определиться с требуемой вам производительностью устройства, что при отсутствии знаний внутреннего устройства, сделать практически невозможно. В десктопах вы в любой момент при желании сможете что-то заменить или добавить, а старые железки продать на каком-нибудь интернет-аукционе. Вообще, самостоятельная покупка комплектующих в магазинах, а так же их продажа и обмен через различные «железячные» барахолки на просторах интернета, могут существенно снизить ваши расходы, направленные на модернизацию компьютера. Но и здесь есть свои подводные камни.

Неправильный выбор комплектующих при покупке нового системного блока, может привести к тому, что модификация вашего компьютера будет практически невозможна. А если и возможна, то только путем замены практически всех компонентов, что как вы понимаете, апгрейдом уже не назовешь. Да и названия комплектующих, так же как и готовых компьютеров, не менее запутаны и трудны для восприятия несведущему покупателю.

- Самостоятельный мелкий ремонт. Здесь, как и в случае с апгрейдом, знание внутреннего устройства ПК в полной мере пригодится только владельцам стационарных компьютеров. Например, у вас дома случился скачок напряжения, что не такая уж большая редкость. Последствием этого события нередко является частичный выход вашего компьютера из строя. В целях экономии денежных средств, ваших нервов, времени и сил, при определенных знаниях, замену сгоревших комплектующих без труда можно произвести прямо у себя дома. Тем более в таких случаях везти ваш компьютер на гарантийное обслуживание практически бесполезно, так как такого рода повреждения под гарантию не попадают. Даже если ваших знаний не хватит для осуществления замены, вышедших из строя деталей, как минимум, вы сможете оценить их стоимость на рынке и купить самостоятельно по более выгодной цене, чем вам предложат в сервисном центре. Таким образом возможно не только снизить затраты на ремонт, но и избежать несанкционированной установки деталей, бывших в употреблении, выдаваемых за новые.

МЕТОДИКА

Наш ознакомительный процесс с устройством ПК мы начнем с описания основных его компонентов. В современных настольных компьютерах и ноутбуках их насчитывают семь:

  • Системная плата
  • Центральный процессор
  • Оперативная память
  • Видеокарта
  • Жесткий диск
  • Оптический привод
  • Блок питания и корпус

О каждом из них мы поговорим подробно, а в конце описания будем рассматривать примеры реальных названий комплектующих из каталогов фирм-продавцов компьютерного железа. Таким образом, полученные теоретические знания, мы будем сразу учиться применять на практике. В завершении обзора, для полноты картины, коротко рассмотрим дополнительные устройства, устанавливаемые в мобильные и настольные ПК для расширения их функциональных возможностей.

ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР (ЦП или центральное процессорное устройство ЦПУ) - главная часть аппаратного обеспечения компьютера и его вычислительный центр. По сути, он является исполнителем машинных инструкций и предназначен для выполнения сложных компьютерных программ. У ЦПУ есть несколько главных характеристик, но для обычного обывателя важны лишь две - тактовая частота и количество ядер. Первые массовые многоядерные процессоры для настольных ПК были выпущены в начале 2006 года и на данный момент почти полностью вытеснили одноядерные.

Для значительного ускорения вычислений, любой современный процессор оснащен встроенной памятью с очень быстрым доступом, которая предназначена для хранения данных, которые могут быть запрошены процессором с наибольшей вероятностью. Называется этот буфер кэшем и может быть первого (L1), второго (L2) или третьего (L3) уровня. Самой быстрой памятью и по сути, неотъемлемой частью процессора, является кэш первого уровня, объем которого совсем невелик и составляет 128 Кб (64x2). Большинство современных ЦПУ без кэша L1 функционировать не могут. Вторым по быстродействию следует L2-кэш и в объеме может достигать 1-12 Мб. Ну и самым медленным, но зато и самым внушительным по размеру (может быть более 24 Мб) является кэш третьего уровня и имеется далеко не у всех процессоров.

Еще одним немаловажным моментом является понятие процессорного разъема или гнезда процессора, называемого сокетом (Socket), в который этот самый процессор устанавливается. Различные поколения или семейства ЦПУ, как правило, устанавливаются в свои уникальные разъемы и этот факт необходимо учитывать при подборе связки материнская плата - процессор.

Из-за сложности и высокотехнологичности производства, высочайшим требованиям к качеству продукции, конкурентоспособных компаний выпускающих центральные процессоры не так уж и много, а для рынка настольных ПК так и всего две - Intel и AMD. Их давнее соперничество началось еще в начале 90-ых, правда за эти 20 лет доля продаваемых процессоров компанией AMD, всегда была значительно ниже доли Intel. Тем не менее, продукция Advanced Micro Devices всегда отличалась привлекательным соотношением производительность/цена при достаточно демократичной розничной стоимости своей продукции, что дает ей возможность достаточно уверенно удерживать свою долю рынка, равной около 19% от общемировой доли.


Для удобства позиционирования на рынке, каждый производитель разделяет свою продукцию на различные семейства, в зависимости от возможностей и производительности процессоров. В рамках данной статьи мы познакомимся только с теми линейками компаний, которые актуальны на данный момент и находятся в розничной продаже.

  • Sempron - самый низкобюджетный процессор для настольных ПК и мобильных устройств являющийся прямым конкурентом процессорам Celeronкомпании Intel. Основной нишей данного процессора являются простые приложения для повседневной работы.
  • PhenomII - многоядерное семейство высокопроизводительных процессоров, предназначенных для решения любых задач. Является флагманской линейкой для настольных компьютеров и содержит в себе процессоры с количеством ядер от 2 до 6.
  • AthlonII - многоядерное семейство процессоров, созданное как очень бюджетная альтернатива более дорогим процессорам серии Phenom II. Предназначен для решения повседневных задач и ориентирован как вариант для "бюджетных" игровых систем и ПК с весьма приличной производительностью.
  • A- Series- новейшее четырехъядерное семейство процессоров, являющееся на данный момент последней разработкой компании AMD, поступившей в продажу. Отличительной чертой данной серии служит встроенная в ядро процессора, графическая видеокарта Radeon.
  • Celeron - большое семейство низкобюджетных процессоров, предназначенное для использования в домашних и офисных компьютерах начального уровня.
  • PentiumDual-Core - устаревшее семейство бюджетных двухъядерных процессоров для недорогих домашних и офисных систем. Не смотря на то, что процессоры этой серии до сих пор повсеместно продаются, большинство пользователей в нынешнее время делает свой выбор в пользу более актуального и рентабельного Core i3.
  • Core i3 - новое поколение двухъядерных процессоров начального и среднего уровня цены и производительности. Призваны заменить морально устаревшие Pentium Dual-Core на архитектуре старого поколения Intel Core 2. Имеют встроенный графический процессор и встроенный контроллер памяти.
  • Core i5 - семейство процессоров среднего уровня цены и производительности. ЦПУ данной серии могут содержать 2 или 4 ядра и в большинстве своем встроенную графическую карту. Отличное решение для «игровых» и мультимедийных систем. Поддерживают технологию TurboBoost, которая заключается в автоматическом разгоне процессора под нагрузкой.
  • Core i7 - флагманская линейка процессоров от компании Intel. Устанавливаются в высокопроизводительные системы, предназначенные для решения задач любой сложности. Поддерживает Turbo Boost, с которой процессор автоматически увеличивает производительность тогда, когда это необходимо.

Таблица основных характеристик семейств процессоров для настольных ПК компаний Intel и AMD

Заканчивая эту тему, напоследок, давайте заглянем в прайс-лист любой компьютерной компании и попробуем разобраться в какой-нибудь позиции из каталога процессоров, применив только что полученные знания. Например, расшифруем запись вида:

«Процессор Socket 1155 Intel Core i5 G620 (2.6GHz, L3 3Mb) BOX».

  • Socket 1155 - процессор устанавливается в разъем типа LGA 1155
  • Intel Core i5 - процессор относится к семейству Core i5 и произведен компанией Intel
  • G620 - модель процессора
  • 2.6GHz - тактовая частота процессора (чем она выше, тем процессор быстрее)
  • L3 3Mb - процессор имеет кэш третьего уровня, который равен 3 мегабайтам
  • BOX - означает, что процессор идет в комплекте с вентилятором и имеет фирменную трехлетнюю гарантию (OEM - без вентилятора и гарантия 1 год)

ОПЕРАТИВНАЯ ПАМЯТЬ (оперативное запоминающее устройство ОЗУ)- важнейшая часть системы, отвечающая за временное хранение данных и команд, необходимых процессору для выполнения различных операций. Основными характеристиками памяти являются ее тактовая частота, от которой зависит ее пропускная способность и объем.

Не менее важным показателем для памяти является поколение, к которому оно относится. Естественно, что память разных поколений имеет совершенно разные характеристики (напряжение питания, энергопотребление, тактовую частоту, пропускную способность, латентность и т.д.). В рамках этого обзора, мы не будет на этом подробно останавливаться, единственное, что вам необходимо помнить, что разъемы для установки модулей памяти для разных поколений различны, и это необходимо учитывать при выборе связки оперативная память - материнская плата.

В современных настольных и мобильных ПК в основном используется память типа DIMM (двухсторонний модуль памяти) DDR (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) трех разных поколений. Номер поколения всегда отражается в названии модуля памяти. Нужно отметить, что на данный момент память первого поколения DDR является уже сильно устаревшей и встретить ее можно только в компьютерах четырех, пятилетней давности, а ОЗУ второго поколения DDR2 на данный момент активно замещается DDR3.

Теперь давайте посмотрим, как выглядит название модуля памяти в реальном каталоге компьютерной компании, и попытаемся в нем разобраться. Например:

«Оперативная память 4Gb PC3-10600 1333MHz DDR3 DIMM» .

  • 4Gb - объем модуля памяти
  • PC3 - 10600 - максимальная пропускная способность памяти (пиковый объем данных, которым оперативная память может за секунду обмениваться с процессором). В данном случае она равна 10667 Мб/сек.
  • 1333MHz - тактовая частота памяти
  • DDR3 - поколение памяти
  • DIMM- форм фактор модуля ОЗУ

Иногда оперативная память продается в комплекте по 2 или 3 модуля, например: «Оперативная память 4Gb (2x2Gb) PC3-10600 1333MHz DDR3 DIMM». Для чего это делается? Дело в том, что в современных компьютерах используется двухканальный (гораздо реже трехканальный) режим работы памяти, который на практике повышает пропускной режим работы памяти до 70%, что, несомненно, повышает общую производительность системы. Чтобы этот режим включился, на компьютере модули оперативной памяти должны устанавливаться парами (тройками), а эта пара (тройка) должна иметь одинаковые характеристики.

Двухканальный режим Трехканальный режим


Именно поэтому производители уже на заводе отбирают попарно (по три) модули памяти и тестируют их на предмет безошибочной совместной работы. Прошедшие тест модули упаковываются вместе и продаются уже комплектом. Но это не означает, что модули, которые продаются по отдельности, не смогут нормально работать вместе. Просто вероятность возникновения каких-либо ошибок все же существует, хотя она очень мала. Всегда старайтесь задействовать многоканальный режим работы памяти для повышения производительности, устанавливая модули только парами (тройками). Запомните это.

ВИДЕОКАРТА (графический адаптер, графическая карта, видеоадаптер) - устройство, которое формирует графический образ и выводить его на экран монитора. В эпоху зарождения настольных ПК графические адаптеры выполняли лишь функцию вывода на экран уже сформированного процессором изображения. Нынешнее же поколение графических карт занимается не только выводом изображения, но и самостоятельно формирует его.

Современные видеоадаптеры могут быть встроенными (интегрированными) в системную плату компьютера или являться платой расширения, которая вставляется в специальный разъем для видеокарт PCI-Express (ранее таким разъемом был AGP, который сейчас устарел) на материнской плате. Первая группа адаптеров, как правило, используется в бюджетных решениях для работы с офисными приложениями, где речи не идет о формировании сложных трехмерных изображений и вообще требования к графической составляющей невелики. И хотя последнее время многие интегрированные решения уже позволяют пользователям смотреть видео высокой четкости (HD) и наслаждаться трехмерной (3D) графикой начального уровня, их возможности не идут ни в какое сравнение с возможностями видеокарт, которые выпускаются, как самостоятельные решения.

По сути, видеоадаптер, являющийся самостоятельной платой расширения - это еще один компьютер в вашем компьютере. Он имеет собственный графический процессор (GPU) или даже два, видеопамять (GDDR), систему охлаждения, систему питания, видеоконтроллер и цифроаналоговый преобразователь. Столь сложное устройство видеокарты обусловлено очень высокими требованиями к вычислительным ресурсам для построения реалистичной и динамичной трехмерной картинки в реальном времени. Поэтому для того, чтобы насладиться в полной мере красотами современных 3D-игр, необходимо, что бы ваш компьютер был оснащен графической картой самого высокого уровня.

Основными характеристиками видеокарты являются тактовые частоты видеопроцессора и видеопамяти, количество работающих исполнительных блоков внутри графического процессора, ширина шины видеопамяти (влияет на количество передаваемых памятью данных за один такт) и объем видеопамяти. Как правило, современные графические адаптеры имеют несколько выходов с одинаковыми или разными графическими интерфейсами для подключения разнообразных мониторов и телевизоров. Сейчас наиболее распространенными являются аналоговый интерфейс VGA и цифровые: DVI, HDMI (miniHDMI), DisplayPort (miniDP). Последние два, помимо видеоряда передают и звук.

Производством плат видеокарт на данный момент занимается достаточно много компаний, но как не странно весь рынок графических адаптеров поделен всего на два основных конкурирующих лагеря. Дело в том, что графический процессор определяет практически все основные характеристики карты, от которых зависит ее производительность и является ее ключевым компонентом. Ну а в проектировании и выпуске графических чипов, как и в случае с центральными процессорами, с середины 90-х ведут яростную борьбу за потребителей два непримиримых соперника - канадская компания ATI, купленная и ныне принадлежащая AMD и калифорнийская NVIDIA. Стоит отметить, что за все эти годы ни одной из них так и не удалось склонить чащу весов в свою пользу и на сегодняшний день их доли на рынке видеопроцессоров можно оценивать как 50 на 50. Все видеокарты для широкого применения (для домашних ПК), произведённые на основе графических чипов от компании ATI (AMD) имеют название Radeon, а выпущенные на логике NVIDIA - называются GeForce. Есть у этих компаний и профессиональные решения для рабочих станций. Называются эти линейки Quadro от NVIDIA и FireGL от ATI (AMD).


Сегодня на прилавках компьютерных магазинов можно встретить видеоадаптеры, построенные на графических чипах сразу двух поколений, а в некоторых случаях даже трех. У NVIDIA это семейства GeForce GT 2XX, GT 4XX (морально устаревшие линейки и сейчас в продаже в основном остались только бюджетные модели), GTX 5XX и GTX 6XX, а у AMD (ATI) Radeon HD 5XXX, HD 6XXX и HD 7XXX. Принцип формирования модельного ряда графических карт у обеих компаний схож. Как правило, модели серии отличаются тактовыми частотами видеочипа и памяти, разным количеством отключенных исполнительных блоков и шириной шины памяти. В зависимости от сочетаний вышеупомянутых характеристик, формируется общая производительность видеокарты и ее стоимость. Думаю, не стоит объяснять, что чем выше производительность и возможности видеоадаптера, тем больше его цена. Ниже приведена сводная таблица наиболее популярных графических процессоров и их бюджетное позиционирование на рынке.

Бюджетное позиционирование графических процессоров

Далее стоит упомянуть о таких важных технологиях, как SLI (3-Way SLI) от NVIDIA и CrossFire (CrossFire X) от AMD (ATI), позволяющих объединять вычислительную мощность двух, трех и даже четырех видеокарт установленных в один компьютер. Одновременное использование нескольких видеокарт в одной системе может быть интересно в тех случаях, когда необходимо получить суперпроизводительную видеосистему, превышающую по мощности любую из существующих одиночных видеокарт. Нередки и такие случаи, когда установка двух видеоадаптеров среднего (производительного) класса экономически выгоднее, чем установка одной видеокарты той же производительности. Для реализации этих технологий необходимо наличие на материнской плате двух и более слотов для видеокарт PCI-Express, а так же поддержка этих самых технологий чипсетом системной платы.


Для того чтобы упростить жизнь разработчикам игр и мультимедиа приложений, компанией Microsoft был придуман независимый программный комплекс DirectX, который избавляет их от написания программ под каждую отдельную видеокарту и дает возможность использовать уже готовые решения из этой библиотеки. В свою очередь видеокарты со своей стороны тоже должны поддерживать ту или иную версию библиотеки DirectX, влияющей на способность адаптера выполнять определенный набор функций на аппаратном уровне. Чем более позднюю версию DirectX поддерживает видеокарта, тем больше набор функций и, соответственно, шире ее возможности по созданию специальных эффектов. В случае, когда игра была создана с использованием новой версии DirectX, а видеокарта ее не поддерживает, вы не сможете в полной мере насладиться всеми видеоэффектами, предусмотренными разработчиками.
Современные видеокарты поддерживают версию 11. Но нужно учесть, что DirectX 11 работает только под Windows Vista или Windows 7, если у вас Windows XP - придется ограничиться версией 9.0c.

Ну и напоследок, давайте рассмотрим пару примеров названий видеокарт из реального компьютерного каталога и разберем их по полочкам:

Пример 1: «Видеокарта 1536 Mb GTX580, PCI- E, 2 xDVI, HDMI, DisplayPort OEM»

  • 1536Mb - объем видеопамяти, установленный на видеокарте в мегабайтах
  • GTX580 - тип графического процессора видеокарты, по которому легко определяется и компания производитель этого самого процессора (в данном случае это NVIDIA)
  • 2xDVI, HDMI, DisplayPort - имеет два выхода DVI, один HDMI и один DisplayPort для подключения различных устройств вывода (мониторы, ЖК телевизоры, плазма)
  • OEM - видеокарта продается без коробки

Пример 2: «Видеокарта 2048Mb HD6950, PCI-E, VGA, DVI, HDMI, 2хmini DP Retail »

  • 2048Mb - объем видеопамяти, установленный на видеокарте в мегабайтах
  • HD6950 - тип графического процессора видеокарты, в данном случае произведенный компанией AMD (ATI)
  • PCI-E - тип разъема в который устанавливается видеокарта
  • VGA, DVI, HDMI, 2хminiDP - перечисление имеющихся выходов на видеокарте
  • Retail - видеокарта продается в красочной упаковке

ЖЕСТКИЙ ДИСК (HDD) - устройство хранения данных, основанное на принципах магнитной записи. Основное устройство в вашем компьютере, на котором располагается вся информация, начиная с установленной операционной системы и заканчивая вашими личными файлами.

Основными характеристиками этого устройства являются:

Емкость - количество данных, которые могут храниться на накопителе. Еще недавно весь модельный ряд жестких дисков укладывался в диапазон от 80 до 1000 Гигабайт. Но уже сейчас современные накопители, благодаря технологии перпендикулярной записи, имеют размеры в 3 Терабайта (3000 Гб).

Физический размер . Накопители, имеющие ширину 3,5 дюйма (редко 2,5 дюйма) используются в настольных компьютерах, а 2,5 или 1,8 дюйма - в мобильных устройствах (ноутбуки или нетбуки).

Скорость вращения шпинделя . Важная характеристика, от которой зависят время доступа и средняя скорость передачи данных. Чем больше скорость вращения, тем быстрее жесткий диск. Измеряется в оборотах в минуту и в основном имеет значения: 5400 об/мин (в основном ноутбуки или высокоемкостные диски шириной 3,5”), 7200 об/мин (настольные ПК, реже ноутбуки), 10000 и 15000 об/мин (высокопроизводительные ПК или серверы). Любителям тишины следует помнить, что уровень шума накопителя сильно возрастает на высоких оборотах и при сборке тихой системы выбирать диск со скоростью выше 7200 об/мин не рекомендуется.

Интерфейс подключения - тип разъема и шины, которые используются для подключения и обмена данными с жестким диском. Долгое время, самым распространённым интерфейсом в настольных и мобильных компьютерах являлся Parallel ATA (он же IDE, ATA, Ultra ATA, UDMA 133) с максимальной пропускной способностью 133 Мбайт/сек, в котором использовался принцип параллельной передачи данных. Из-за этого разъем подключения был достаточно широким и имел 40 контактов, а громоздкие 80-жильные кабели подключения всегда мешались в корпусе и мешали нормальному охлаждению. И хотя многие современные системные платы до сих пор оснащаются разъемом IDE, дни этого интерфейса сочтены, а на смену ему уже давно пришел новый стандарт - Serial ATA (SATA), использующий последовательный интерфейс передачи данных. Пропускная способность современной 3-ей ревизии SATA III составляет 600 Мбайт/сек и превышает возможности PATA в 4,5 раза. Более того, SATA использует миниатюрный 7-контактный разъем, и соответственно, кабель гораздо меньшей площади, чем IDE, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера и упрощается разводка проводов внутри системного блока.

Время произвольного доступа - среднее время, за которое осуществляется позиционирование головки чтения/записи на произвольный участок магнитного диска. Как правило, у дисков, предназначенных для установки в настольные и портативные компьютеры, оно составляет от 8 до 16 миллисекунд и является основным тормозом скорости работы магнитного накопителя. Для сравнения, у новомодных твердотельных накопителей (SSD) оно равно 1 мсек.

Буфер - промежуточная память (кэш), предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных носителях варьируется от 8 до 64 Мб.

Для любопытных пользователей в подробных описаниях жестких дисков можно встретить и дополнительные их параметры, такие как: уровень шума, надежность, потребление энергии, время ожидания, сопротивление ударам и скорость передачи данных с внутренней и внешней зоны диска.

Совсем недавно на современном рынке магнитных накопителей вся продукция была представлена четырьмя производителями: крупнейшими в мире Western Digital (WD) и Seagate, а так же Hitachi и Samsung. Но в 2011 году ситуация изменилась, WD приобрела подразделение компании Hitachi по производству жестких дисков, а Seagate купила подразделение Samsung. Таким образом, к двум сегментам компьютерного рынка (производство центральных и графических процессоров), прибавился третий (производство жестких дисков), где разработкой и производством продукции занимаются только две конкурирующие компании.

Заканчивая описание жестких дисков, мы как обычно, рассмотрим пример названия накопителя из компьютерного каталога и попытаемся понять, что же там написано.

Жесткий диск 3.5" 1 Tb 7200rpm 64Mb cache Western Digital Caviar Black SATA III (6Gb/ s)

  • 3.5” - жесткий диск имеет ширину 3,5 дюйма и предназначен для установки в настольный ПК
  • 1 Tb- емкость жесткого диска, составляющая в данном случае 1 терабайт (1000 Гигабайт)
  • 7200rpm- скорость вращения шпинделя, в данном случае 7200 оборотов в минуту
  • 64Mb cache - размер буфера в мегабайтах (здесь он максимален)
  • Western Digital - фирма производитель
  • Caviar Black - семейство, к которому относится жесткий диск. Black - семейство самых производительных дисков компании WD
  • SATA III - интерфейс подключения жесткого диска
  • 6Gb/s - максимальная пропускная способность интерфейса, в данном случае равная 6 Гбит/сек (600 Мбайт/сек).

Надеюсь здесь все понятно и мы можем двигаться дальше.

ОПТИЧЕСКИЙ ПРИВОД - устройство, предназначенное для считывания, записи и перезаписи информации с оптических носителей информации в виде пластикового диска (CD, DVD, BD).

В начале 90-x, самым распространённым оптическим носителем был компакт диск (CD), на котором можно было разместить 700 Мбайт различных данных. Именно поэтому первые оптические приводы умели только читать и только CD и назывались CD-ROM. Следующим, активно развивающимся форматом стал и сейчас наиболее распространённый DVD. На диски этого стандарта можно было записать уже 4,7 Гбайт информации, что почти в 7 раз больше, чем на CD. Компьютерные приводы, призванные проигрывать DVD-диски назвали DVD-ROM, при этом возможность считывания на этом устройстве обычных CD-дисков сохранилась. В это же время на рынке стали появляться первые устройства записи на носители CD, которые получили название CD-RW. Затем появились комбинированные оптические приводы (ComboDriveили «комбайн»), которые умели читать CD и DVD, а записывать только CD. На этом прогресс, конечно, не остановился и следующим логическом шагом стало появление на рынке записывающих DVD-приводов, которые могли и читать и записывать любые диски. Правда изначально они были очень дороги и довольно долгое время наиболее популярным оптическим устройством, устанавливаемым в домашние компьютеры, был именно комбо-привод из-за своей ценовой доступности. Но со временем DVD-RW приводы подешевели, и до сих пор этот класс оптических устройств является самым распространённым на всех видах компьютеров.

На сегодняшний день максимальная емкость DVD диска составляет 8,5 Гбайт (двухслойный диск). Но с появлением мультимедиа контента высокой четкости (HD), для его хранения и распространения этого объема оказалось недостаточно, и поэтому весной 2006 года на рынке появился новый формат оптических носителей - Blu-Ray. Однослойный диск Blu-Rayможет хранить 25 Гбайт цифровых данных, включая видео и аудио высокой четкости, двухслойный может вместить 50 Гбайт, трехслойный 100 Гб, а четырехслойный 128 Гб (BDXL). Современные оптические приводы Blu-Ray (BD-ROM) умеют читать, записывать и перезаписывать не только диски нового формата (BD), но и предшествующих - DVD и CD.

Основными характеристиками оптических приводов являются скорости чтения, записи и перезаписи данных в различных форматах. Ранее указывались непосредственно в самом названии привода, но из-за увеличения поддержки различных форматов дисков, теперь указываются только в подробном описании устройства. Приятным бонусом может стать наличие технологии маркировки специально подготовленных дисков, позволяющая получать изображение на его обратной поверхности. Как и жесткие диски, оптические приводы могут иметь два интерфейса подключения, устаревший IDE и современный SATA.

Пример названия оптического привода выглядит довольно лаконично и содержит минимум информации: Привод Blu-ray Pioneer BDR-206DBK, Black, SATA, OEM

  • Blu-ray - привод поддерживает все существующие форматы оптических носителей, включая, новейший Blu-Ray
  • Pioneer - фирма производитель оптического привода
  • BDR-206DBK- модель привода
  • Black- цвет привода
  • SATA - интерфейс подключения привода
  • OEM- привод продается без красочной коробки и дополнительных аксессуаров (винтов крепления и кабеля подключения)

Как видите, здесь все просто, но в тоже время, для понимания всех возможностей привода необходимо изучить его подробное описание.

Теперь, познакомившись с основными комплектующими, входящими в состав компьютера, пришло время рассмотреть деталь, которая все это объединяет в единое целое.

МАТЕРИНСКАЯ ПЛАТА (системная плата, мать, главная плата, материнка) - это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно оперативная память, графический адаптер, контроллеры подключения жестких дисков и оптических приводов, контроллеры базовых интерфейсов ввода-вывода, звуковая и сетевая карта). Как правило, системная плата так же содержит разъёмы (слоты) для подключения дополнительных плат и устройств по шинам USB, PCI и PCI-Express.

В рамках данного материала, для упрощения восприятия, мы будем рассматривать лишь материнские платы для настольных ПК, не забивая себе голову изделиями для мобильных компьютеров. Тем более для общего понимания вопроса этого будет вполне достаточно.

Основные компоненты материнской платы

Ключевым компонентом материнской платы является чипсет (набор системной логики) - набор микросхем, который обеспечивает подключение ЦПУ к оперативной памяти, графическому контроллеру и контроллерам периферийных устройств. Именно набор системной логики определяет все ключевые особенности системной платы, то, какие устройства могут к ней подключаться и, по сути, все будущие возможности вашего компьютера.

Все системные платы можно разделить на два основных лагеря - материнки для процессоров Intel и материнки для процессоров AMD. Соответственно и наборы системной логики для своих процессоров выпускаются ими же. Внутри этих двух основных групп, дальнейшее разделение, удобно вести по процессорным разъемам (сокетам). Для процессоров компании Intel, на сегодняшний день, выпускаются системные платы с четырьмя разновидностями сокетов, а для AMD - тремя. Для каждого сокета у разработчиков существуют несколько наборов системной логики, ориентированных на разные бюджетные сегменты рынка.

Как видно из блок-схемы, разновидностей чипсетов, а значит и материнских плат, построенных на них и их модификациях, достаточно много. Давайте посмотрим, на какие же основные характеристики компьютера может влиять та или иная модификация чипсета и на что стоит обращать внимание в первую очередь:

  • Тип центрального процессора
  • Тип оперативной памяти (DDR, DDR-II, DDR-III), ее пропускную способность и возможный максимальный объем
  • Наличие или отсутствие встроенного видеоадаптера, а при его наличии, возможный интерфейс подключения (VGA, DVI, HDMI)
  • Возможность установки нескольких видеокарт для задействования технологий SLI и CrossFire
  • Количество и ревизию разъемов SATA для поключения жестких дисков и оптических приводов
  • Наличие или отсутствие поддержки технологии RAID (возможность создание массива из нескольких жестких дисков, воспринимаемых системой как единое целое)
  • Количество и ревизию разъемов USBдля подключения периферийных устройств
  • Тип звуковой карты (2, 5 или 7 каналов) и наличие ее цифровых выходов
  • Количество сетевых интерфейсов
  • Наличие дополнительных выходов (e-SATA, FireWire) для подключения цифровых периферийных устройств
  • Количество и типы разъемов для подключения плат расшерений (звуковые и сетевые карты, модемы, тв-тюнеры, платы аналогового и цифрового видеозахвата и т.д.)
  • Наличие устаревших разъемов и соответствующих интерфейсов FDD и LPT

На последок стоит упомянуть о еще одной немаловажной харктеристике системной платы - форм-фактор. Это стандарт оперделяющий ее размеры, места крепления к корпусу компьютера и всю ее разводку (расположение на ней интерфейсов, портов, слотов и типов разъемов для подключения питания). Современными и наиболее распространенными стандартами являются ATX (доминирующий формат), micro-ATX и mini-ITX.

Как и следовало ожидать, названия материнских плат в прайс-листах выглядят очень громоздко и наиболее сложны к восприятию, так как включают в себя достаточно множество характеристик устройства. Давайте на примере разберем одно из них: Материнская плата ASUS P8P67 DELUXE (B3), Socket 1155, Intel P67, 4xDDR3, 3xPCI-E 16x, 2xPCI-E 1x, 2xPCI, 4xSATA II+4xSATA III, RAID0/1/5/10, 7.1 Sound, Glan, USB3.0, ATX, Retail

  • ASUS P8P67 DELUXE (B3) - фирма производитель, модель и ревизия (указывается нечасто)
  • Socket 1155 - тип разъема для установки центрального процессора
  • Intel P67 - название чипсета
  • 4xDDR3 - на плате имеется 4 разъема (слота) для установки модулей оперативной памяти третьего поколения
  • 3xPCI-E 16x - на плате есть целых три разъема для видеокарт, а значит, есть возможность использовать технологии SLI (3-WaySLI) от NVIDIA и CrossFire(CrossFireX) от AMD (ATI)
  • 2xPCI-E 1x - на плате есть два разъема типа PCI-EX1 для установки дополнительных плат расширения (звуковых и сетевых карт, модемов, тв-тюнеров и т.д.)
  • 2xPCI - на плате имеется два разъема PCIдля установки дополнительных плат расширения (звуковых и сетевых карт, модемов, тв-тюнеров и т.д.)
  • 4xSATA II+4xSATA III - на плате распаяно 4 интерфейсных разъема SATAвторой ревизии и четыре третей для подключения жестких дисков и оптических приводов.
  • RAID0/1/5/10 -материнская плата поддерживает технологию объединения нескольких жестких дисков и дает возможность создавать массивы 0-ого, 1-ого, 5-ого и 10-ого уровня
  • 7.1 Sound - имеется встроенная 7-канальная звуковая карта
  • Glan - на системной плате присутствует гигабитная сетевая карта
  • USB 3.0 - на плате есть разъемы нового стандарта USB3.0
  • АТХ - форм-фактор материнской платы
  • Retail- системная плата продается в коробке и укомплектована соединительными кабелями, программным обеспечением и инструкцией по установке

Итак, самое сложное позади и мы выходим на финишную прямую.

БЛОК ПИТАНИЯ И КОРПУС

Блок питания (БП) - предназначен для снабжения узлов компьютера электрической энергией постоянного тока, а также преобразования сетевого напряжения до необходимых значений. В некоторой степени блок питания может выполнять функции стабилизации и защиты компонентов компьютера от незначительных скачков напряжений.

Основной характеристикой БП является его мощность, которая в современных изделиях варьируется от 300 до 1500W (Ватт). Как правило, для офисного компьютера достаточно мощности в 400 - 450W, а вот для продвинутых игровых систем с установленными несколькими видеокартами может потребоваться очень мощный блок питания, так как в пиковой нагрузке энергопотребление такой системы может достигать от 700 - 1000 Вт.

Необходимо учитывать тот факт, что выбирать мощность блока питания стоит с запасом от расчетной пиковой нагрузки, потому как в таком случае он будет меньше греться, а значит, и его система охлаждения будет работать тише. Щадящий режим благоприятно скажется и на сроках эксплуатации. Не стоит забывать и то, что со временем в силу различных фактов, показатели мощности БП могут упасть на 15 -20% от номинальной.

Как правило, чем мощнее блок питания, тем больше разъемов и их модификаций для питания различных компонентов компьютера он содержит. Правда, в большинстве случаев количество этих самых разъемов избыточно, а что бы уложить компактно большой объем проводов в корпусе, приходится потратить немало усилий. Именно поэтому многие производители выпускают БП с отстёгивающимися кабелями, где вы можете подключить только необходимые вам разъемы.

Остерегайтесь покупки дешевых некачественных блоков питания от неизвестных производителей. Все компоненты компьютера питаются низким напряжением (+3, + 5 и +12 В) и для того что бы вывести из строя какую-нибудь плату, достаточно разряда статического электричества от наэлектризованного свитера. Что уж говорить о том, если блок питания пропустит даже незначительный скачек напряжения сквозь себя или будет выдавать ненормативные их значения. Не высоки и потребительские качества этих устройств. Как показывает практика, реальное значение мощности таких изделий, гораздо ниже заявленных на этикетках, а срок их службы недолог.

Как правило, в каталогах комплектующих названия блоков питания одни из самых емких и коротких, например: Блок питания ATX 1000W OCZ Z1000M-UN

  • ATX - стандарт разъема питания материнской платы, являющийся основным для настольных ПК
  • 1000W - мощность блока питания
  • OCZ - фирма производитель БП
  • Z1000M-UN - модель блока питания

Вот так все просто, но не стоит думать, что выбор источника питания является тривиальной задачей. Как раз наоборот, это тот случай, когда в названии практически не содержится полезной информации и необходимо обязательно изучать его подробное описание, где вы сможете узнать о количестве различных разъемов питания, его эффективности (КПД), наличие защиты от перенапряжения, перегрузки и многое другое. Правильный выбор хорошего источника питания - залог долгой и бесперебойной работы железных компонентов вашего компьютера.

Несколько слов скажем и о блоках питания для ноутбуков. Они, как правило, применяются для зарядки аккумуляторных батарей, а так же для обеспечения ноутбука питанием в обход аккумулятора. По типу исполнения БП ноутбука является внешним блоком. Выпускаются источники питания для мобильных устройств под конкретную модель (серию), имеют разные характеристики и разъемы питания, и поэтому на них нет единого стандарта, а сами БП обычно не взаимозаменяемы. В случае покупки нового блока для ноутбука, у вас нет никаких вариантов, кроме как приобретать именно тот источник питания, который предназначен для вашей модели мобильного устройства.

Корпус (системный блок) - защищает внутренние элементы компьютера от внешних воздействий и механических повреждений, поддерживает внутренний температурный режим и экранирует электромагнитные излучения. Основными характеристиками являются его тип (вертикальный Tower или горизонтальный Desktop) и размер (маленький Mini, средний Midi, большой Big). Самым распространенным форматом является Midi Tower, потому как такие корпуса предназначены для установки материнских плат самого популярного форм-фактора - ATX. Так же при выборе корпуса следует учитывать количество и расположение внешних USB портов, аудио-выходов, наличие выходов FireWire на внешней панели, количество внутренних вентиляторов и их размер.

Корпуса и блоки питания для настольных ПК могут продаваться как раздельно, так и вместе, комплектом. Как правило, для офисных решений, начального и среднего сегмента домашних компьютеров, выгоднее покупать комплект. Правда, тогда вам, скорее всего, придется мириться с заурядным дизайном корпуса и средненьким блоком питания. Ну а если вы решили собрать мощную систему или компьютер с уникальным дизайном, то подбирать эти компоненты нужно только раздельно, сообразуясь с аппетитами подобранного железа и своими вкусами.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Вот мы и рассмотрели все основные компоненты, из которых состоит настольный компьютер. Конечно это неполный список комплектующих, которые могут находиться внутри системного блока, а лишь те, которые в обязательном порядке установлены в любом компьютере. Для полноты картины, давайте все же коснемся остальных компонентов, но только вкратце:

Флоппи-дисковод (FDD) - привод для дискет физическим размером 3.5 дюйма. С приходом флешь накопителей, данные носители практически полностью потеряли свою актуальность, а сами приводы можно встретить лишь на очень стареньких компьютерах.

Картридер - устройство для чтения всевозможных карт памяти, использующихся в цифровых и мобильных устройствах. Как правило, в современных компьютерах устанавливается вместо флоппи-дисковода.

ТВ-тюнер - устройство, предназначенное для приема, воспроизведения и записи телевизионного сигнала на домашнем компьютере. Большинство современных тюнеров так же могут принимать и сигнал FM-радиостанций. По способу подключения к компьютеру разделяются на внутренние (для настольных ПК подключение через разъемы PCIи PCI-Eх1, для ноутбуков через разъем CardBus) и внешние (USBи FireWire).

Контроллеры - платы, расширяющие интерфейсные возможности материнской платы. В случае необходимости, с помощью карты контроллера можно добавить дополнительные USB, SATA, FireWire, IDEи LPTинтерфейсы (разъемы). Устанавливаются, как правило, в слоты PCIи PCI-Ex1.

Звуковая карта - дополнительное оборудование, для персонального компьютера позволяющее обрабатывать и выводить звук. Предоставляют пользователю дополнительные возможности и качество по сравнению с интегрированными решениями. Могут быть как внутренними устройствами (устанавливаются в слоты PCIи PCI-Ex1), так и внешними (подключаются к USB, а для ноутбуков PCMCIA).

Сетевой адаптер - устройство, предоставляющее компьютеру возможность взаимодействовать с другими устройствами в сети. Могут быть проводными (Ethernet) или беспроводными (Wi-Fi). По способу подключения к компьютеру так же делятся на внешние и внутренние. На всех современных системных платах проводной сетевой адаптер уже встроен и поэтому как дополнительное оборудование практически больше не используется.

ЗАКЛЮЧЕНИЕ

Теперь давайте вернемся к началу статьи, где в качестве примера были приведены реальные названия компьютерной техники (системного блока и ноутбука), с которыми вы можете столкнуться в любом компьютерном магазине. Определенно, без базовых знаний устройства ПК понять хоть что-то в них практически не возможно. Но если вы внимательно прочитали предыдущий материал, то теперь понять эти аббревиатуры не составит труда. Давайте это проверим. Начнем с описания системного блока:

Системный блок Core i5-2310/ S1155/ H61/4 Gb DDR3-1333/1024 Mb HD6770/ HDD 500 Gb-7200-16 Mb/ DVD+- RW/ Sound 7.1/ GLAN/ ATX 450 W

Если вы внимательно посмотрите на эту надпись, то можно догадаться, что через косую черту указаны различные компоненты системного блока, какие именно, попытайтесь сначала определить самостоятельно, ну а потом уже можно свериться с нашим ответом.

  • Core i5-2310 - Процессор от компании Intelсемейства Corei5. По номеру его модели (2310) можно узнать, что его тактовая частота равна 2.9 ГГц.
  • S1155 - процессорный разъем на материнской плате типа Socket 1155
  • H61 - чипсет материнской платы от компании Intel.
  • 4Gb DDR3-1333 - объем установленной оперативной памяти третьего поколения 4 Гб. Тактовая частота памяти 1333 MHz.
  • 1024Mb HD6770 - видеокарта Radeonот компании AMD/ATI (понятно из индекса HD) с объемом видеопамяти 1024 Мб. Индекс 6770 говорит нам о том, что графический адаптер относится к среднему классу.
  • HDD 500Gb-7200-16Mb - жесткий диск имеет емкость 500 Гб, скорость вращения шпинделя 7200 об/мин и 16 Мб буфер.
  • DVD+-RW - в компьютере установлен оптический привод с возможностью чтения, записи и перезаписи CD и DVDдисков.
  • Sound 7.1 - имеется встроенная семиканальная звуковая карта
  • GLAN - имеется проводная встроенная сетевая карта со скоростью передачи данных 1Гбит.
  • ATX 450W - корпус предназначенный для установки материнской платы форм-фактора ATX и блоком питания, мощностью 450 Ватт.

Посмотрите, насколько много информации о продукте можно почерпнуть из его названия при определенном знании компьютерного железа. Теперь, для закрепления материала, давайте расшифруем типовое название ноутбука. И хотя в его названии есть некоторые значения, которые вам могут быть непонятны, после нашей расшифровки вы будете во всеоружии.

Ноутбук 15.6”/ i7-2630 QM(2.00)/4 Gb/ GTX460 M-1 Gb/750 Gb/ DVD- RW/ Wi- Fi/ BT/ Cam/ W7 HP64

  • 15.6” - размер экрана ноутбука по диагонали.
  • i7-2630QM(2.00) - Вот эта запись должна уже быть вам понятна. Процессор от компании Intelсемейства Corei7 с тактовой частотой 2 ГГц (указана в скобках). Правда тактовую частоту и прочие характеристики процессора можно всегда определить, зная его модель, которая указывается всегда после семейства. В нашем случае это 2630QM.
  • 4Gb - объем оперативной памяти. Как видите, здесь он указан без каких либо подробностей о типе памяти и ее пропускной способности.
  • GTX460M-1Gb - видеокарта GeForceс графическим процессором компании nVidia(это можно понять и аббревиатуры GTX) и видеопамятью 1 Гб. По модели ГП (GTX460) видим, что данный графический адаптер принадлежит к классу производительных решений. Буква “M” в названии видеочипа говорит о том, что он произведен для мобильных устройств.
  • 750Gb - жесткий диск, емкостью 750 Гб.
  • DVD-RW - в ноутбуке установлен оптический привод с возможностью чтения, записи и перезаписи CDи DVDдисков.
  • Wi-Fi - в ноутбуке установлен беспроводный сетевой адаптер.
  • BT - ноутбук оборудован технологией беспроводной связи BlueTooth (блютус), используемой сейчас в основном для подключения периферийных устройств (мыши, наушники и т. д.) и мобильных телефонов.
  • Cam- ноутбук имеет встроенную веб-камеру - цифровую видео и фотокамеру, способную в реальном времени фиксировать изображения, предназначенные для дальнейшей передачи по сети.
  • W7HP64 - как правило в конце конфигурации ноутбука указывается предустановленная на нем операционная система. В данном случае это Windows 7 Home Premium 64 bit.

На этом разрешите закончить наш ликбез по внутреннему устройству персональных компьютеров. Надеюсь этот материал будет для вас не только познавательным, но и хорошим подспорьем, в случае самостоятельной покупки нового компьютера и комплектующих или осуществления модернизации домашнего ПК.


Персональный компьютер - универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства:
  • системный блок;
  • монитор;
  • клавиатуру;
  • мышь.

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними , а устройства, подключаемые к нему снаружи, называют внешними . Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными .


Системный блок состоит из:
  1. корпуса;
  2. материнской платы;
  3. процессора;
  4. оперативной памяти;
  5. жесткого диска;
  6. накопителя флоппи-дисков;
  7. накопителя компакт- (или DVD) дисков;
  8. видеокарты;
  9. звуковой карты
Корпус системного блока
По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный {mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. В настоящее время в основном используются корпуса двух форм-факторов: АТ и АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы .

Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 200-250 Вт.


Рис. 1. Примеры системных блоков

Все основные внутренние устройства персонального компьютера сосредоточены в системном блоке и располагаются в основном на специальном устройстве – материнской плате.

Материнская плата – основная плата персонального компьютера, которая используется для размещения его внутренних устройств.


Внутренняя схема персонального компьютера представлена на рис.2.

Рис.2. Внутренняя схема персонального компьютера

Материнская плата (mainboard, matherboard, systemboard)

Материнскую плату еще часто называют системной платой . Это основа компьютера. Именно эта плата определяет, какого типа процессор можно использовать, какой максимальный размер оперативной памяти можно будет установить и т. д.

Все платы расширения (видеокарта, контроллер SCSI, модем, сетевая карта и т. д.) крепятся к материнской плате. Кроме того, на материнской плате находятся микросхемы, управляющие всем, что есть в компьютере.

Основные компоненты системной платы, которые видны на фото и обозначены цифрами:

  1. Процессорное гнездо.
  2. Разъемы для оперативной памяти.
  3. Интерфейсы шины PCI.
  4. Микросхема системной логики (чипсет).
  5. Интерфейсы для подключения жестких дисков и накопителей CD или DVD дисков.
  6. Интерфейсы для подключения FDD.
  7. Блок портов ввода/вывода.

Процессор

Процессор - это устройство, которое занимается обработкой и вычислением данных. Современные процессоры очень сложны. Основой любого процессора является ядро, которое состоит из миллионов транзисторов, расположенных на кристалле кремния.

Процессор можно разделить на две части:

  • АЛУ (Арифметико-Логическое Устройство) - занимается обработкой данных
  • УУ (Устройство Управления) – занимается передачей данных.
Процессор снабжен внутренней памятью . Называется она кэш-память и бывает двух уровней.

Внутренняя память процессора называется кэш-памятью


Современные процессоры имеют корпуса типа PGA (Pin Grid Array – шахматная решетка массива штырьков). На данный момент времени существуют несколько производителей процессоров, среди них можно особо выделить Intel и AMD.

Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами . Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

Рис. 2. Пример процессоров (слева – Athlon XP 3200+, справа – Athlon XP 3000+)

Следующий элемент - микропроцессорный комплект (чипсет). Это набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы.

Группы микропроцессоров

Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров Intel Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд - CISC-процессорами (CISC - Complex Instruction Set Computing).

В противоположность СISC-процессорам в середине 80-х годов появились процессоры архитектуры ^ RISC с сокращенной системой команд (RISC - Reduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше, и каждая из них выполняется намного быстрее. Таким образом, программы, состоящие из простейших команд, выполняются этими процессорами много быстрее. Оборотная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.

В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

  • CISC-процессоры используют в универсальных вычислительных системах;
  • RISC-npoцеccopы используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций;
  • Нейропроцессоры - за один такт счета он совершает не 4 операции сложения, а 288.
Кроме того, существуют еще два типа микропроцессоров:
  • VLIW (Very Length Instruction Word) – со сверх большим командным словом;
  • MISC (Minimum Instruction Set Command) – с минимальным набором системы команд и весьма высоким быстродействием

ШИНЫ

Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут электрические сигналы.

Шины - это каналы связи, применяемые для организации взаимодействия между устройствами компьютера.


Те разъемы, куда вставляются платы расширения это не шины. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще не видно на материнских платах.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи данных.

ISA (Industrial Standard Architecture – промышленная стандартная архитектура)

Историческим достижением компьютеров платформы IBM PC стало внедрение почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA (Industry Standard Architecture). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина продолжает использоваться в компьютерах для подключения сравнительно «медленных» внешних устройств, например, звуковых карт и модемов.

Рис. 3. Разъем ISA - 16bit

На интерфейс 8 разрядной ISA было выведено 8 каналов данных и 20 каналов адреса. Все это позволяло адресовать до 1 Мбайт памяти. С появлением 80286 процессора, который мог обрабатывать уже 16 бит данных, появилась необходимость в 16 разрядной ISA, что и было реализовано в 1984 году. Разъем был дополнен еще 36 каналами, 8 из которых были выведены под данные, а 7 – под адрес. Следует отметить, что некоторые платы расширения, рассчитанные на 8 разрядную шину, могут работать и с 16 разрядной. Кстати, понятие ключ – выступ в разъеме и вырез в подключаемой плате, появился вместе с 16 разрядной ISA. Так как до 1987 года IBM отказывалась публиковать полное описание и временные диаграммы ISA, многие производители железа решились на разработку собственных шин. Так появилась 32 разрядная ISA, которая не нашла применения, но фактически предопределила появление шин MCA и EISA. В 1985 году фирма Intel разработала 32 разрядный 80386 процессор, который увидел свет в конце 1986 года. Появилась насущная необходимость в 32 разрядной шине ввода/вывода. Вместо того, что бы продолжить дальнейшую разработку ISA, в IBM создали новую шину MCA (Micro Channel Architecture – микроканальная архитектура) которая во всех отношениях превосходила свою предшественницу:

  1. Был использован арбитр шины CACP (Central Arbitration Control Point), который позволял любому подключенному к шине устройству передавать данные любому другому устройству, так же подключенному к этой шине. Кроме этого, CACP предотвращал конфликты и монополизацию шины каким либо одним устройством.
  2. Шина MCA не синхронизирована с процессором, что позволяет снизить возможность лишних конфликтов и помех между платами.
  3. Отсутствие переключателей и перемычек свело установку плат расширения к простому, не требующему дополнительной квалификации, действию.
Но этот стандарт не нашел применения, т.к.:
  1. фирма IBM потребовала от всех фирм – производителей, желающих использовать MCA заплатить деньги за использование ISA во всех ранее выпущенных компьютерах.
  2. компьютерный мир оказался попросту не готов принять в 1987 году подход Plug and Play
  3. цена первых MCA была очень высокой.
Все эти факторы привели к появлению шины EISA, про MCA все забыли.

EISA (Extended Industry Standard Architecture – расширенная промышленная стандартная архитектура)

Расширением стандарта ISA стал стандарт EISA (Extended ISA), отличающийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA, в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA/EISA и устройств, подключаемых к ним, прекращается.

С несколькими фирмами – партнерами Compaq создала комитет EISA, который занимался разработкой нового стандарта. Уже в 1989 году появились первые персональные компьютеры, материнские платы которых были оснащены шиной EISA. Основное ее отличие заключалось в 32 разрядной технологии, хотя и создавалась она на основе архитектуры все той же ISA (тактовая частота осталась прежней – 8,33 МГц). Преимущества новой технологии очевидны: как и в MCA, используется арбитраж запросов ISP (Integrated System Peripheral), повысилась скорость обмена данными, мощность, потребляемая каждым из адаптеров может достигать 45 Вт. При этом была сохранена совместимость с платами, рассчитанными для работы с ISA. Скорость передачи данных равнялась 33 Мбайт/сек. Ко всему прочему, в компьютерах с шиной EISA была предусмотрена возможность автоматической настройки прерываний и адресов адаптеров. Но, к сожалению, и этот проект через короткое время оказался не жизнеспособным.

С повышением тактовых частот и разрядности процессоров настала насущная проблема в повышении скорости передачи данных в шинах (какой смысл использовать камень с тактовой частотой, скажем, 66 МГц, если шина работает на частоте лишь 8,33 МГц). В одних случаях, например клавиатура или мышь, высокая скорость ни к чему. Но инженеры фирм, производителей плат расширения, готовы были изготовлять устройства со скоростью, которую шины не могли предоставить.

Какое же решение было принято? Часть операций по обмену данными осуществлять не через стандартные разъемы шины ввода/вывода, а через дополнительные высокоскоростные интерфейсы. Дело в том, что эти самые высокоскоростные интерфейсы подключаются к шине процессора. Из этого следует, что подключаемые платы будут иметь доступ непосредственно к процессору через его шину. Все это получило название LB (Local Bus – локальная шина). Первые шины ISA как раз и были локальными, но когда их тактовая частота превысила 8 МГц, произошло разделение. А в 1992 году появился еще один расширенный вариант ISA – VLB (VESA Local Bus).

VLB (VESA Local Bus)

Название интерфейса переводится как локальная шина стандарта VESA (VESA Local Bus). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поколений (Intel 80386 и Intel 80486) частоты основной шины (в качестве основной использовалась шина ISA/EISA) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повышенной пропускной способности, - так появился стандарт VLB, который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую пропускную способность до 130 Мбайт/с.

Основным недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 Мц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 Мгц возможно подключение двух, а при частоте 33 Мгц - трех устройств.

VLB была локальной шиной, которая не изменяла, а дополняла существующие стандарты. Просто к основным шинам добавлялось несколько новых быстродействующих локальных слотов. Популярность шины VLB продлилась до 1994 года. VESA (Video Electronic Standard Association) - это ассоциация, которая и предложила новую, уже действительно локальную, шину (не без участия фирмы NEC). Скорость передачи данных VLB равнялась 128 – 132 Мбайт/сек, а разрядность –32. Тактовая частота достигала 50 МГц, но реально не превышала 33 МГц в связи с частотными ограничениями самих слотов. Дополнительные разъемы VLB имеют 116 контактов. Основная функция, для которой была предназначена новая шина – обмен данными с видеоадаптером. Но новая шина имела ряд недостатков, которые не позволили ей долго просуществовать на рынке инфотехнологий. Ну да ладно: чем дальше в лес, тем толще партизаны. Уже в 1992 году начались разработки новой локальной шины PCI.

PCI (Peripheral Component Interconnect bus – шина соединения периферийных компонентов)

Интерфейс PCI (Peripheral Component Interconnect - стандарт подключения внешних компонентов) был введен в персональных компьютерах, выполненных на базе процессоров Intel Pentium. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной компьютера (ISA/ EISA) используются специальные интерфейсные преобразователи - мосты PCI (PCI Bridge). В современных компьютерах функции моста PCI выполняют микросхемы микропроцессорного комплекта (чипсета).

Данный интерфейс поддерживает частоту шины 33 МГц и обеспечивает пропускную способность 132 Мбайт/с. Последние версии интерфейса поддерживают частоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных.

Важным нововведением, реализованным этим стандартом, стала поддержка так называемого режима plug-and-play, впоследствии оформившегося в промышленный стандарт на самоустанавливающиеся устройства. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PC/происходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти.

Конфликты между устройствами за обладание одними и теми же ресурсами (номерами прерываний, адресами портов и каналами прямого доступа к памяти) вызывают массу проблем у пользователей при установке устройств, подключаемых к шине ISA. С появлением интерфейса РС1и с оформлением стандарта plug-and-play появилась возможность выполнять установку новых устройств с помощью автоматических программных средств - эти функции во многом были возложены на операционную систему.

В июне 1992 года на сцене появился новый стандарт – PCI, родителем которого была фирма Intel, а точнее организованная ею группа Special Interest Group. К началу 1993 года появился модернизированный вариант PCI. По сути дела эта шина не является локальной (локальная шина – это та шина, которая подключена к системной шине напрямую). PCI же для подключения к оной использует Host Bridge (главный мост), а так же еще и Peer-to-Peer Bridge (одноранговый мост) который предназначен для соединения двух шин PCI. Кроме всего прочего, PCI является сама по себе мостом между ISA и шиной процессора. Появление шины PCI на рынке производителей всевозможных устройств было своеобразной маленькой революцией. Разнообразие плат расширения, использующих шину PCI настолько велико, что их сложно даже перечислять. Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек. Стандартом PCI предусмотрены три типа плат в зависимости от питания:

  1. 5 Вольт – для стационарных компьютеров
  2. 3,3 Вольт – для портативных компьютеров
  3. Универсальные платы могущие работать в обоих типах компьютеров.
Большим плюсом шины PCI является удовлетворение спецификации Plug and Play. Кроме этого, в шине PCI любая передача сигналов происходит пакетным образом, где каждый пакет разбит на фазы. Начинается пакет с фазы адреса, за которой, как правило, следует один или несколько фаз данных. Количество фаз данных в пакете может быть неопределенно, но ограничено таймером, который определяет максимальное время, в течение которого устройство может использоваться шиной. Такой вот таймер имеет каждое подключенное устройство, а его значение может быть задано при конфигурировании. Для организации работы по передачи данных используется арбитр. Дело в том, что на шине могут находиться два типа устройств – мастер (инициатор, хозяин, ведущий) шины и подчиненный. Мастер берет на себя контроль за шиной и инициирует передачу данных к адресату, т. е. подчиненному устройству. Мастером или подчиненным может быть любое подключенное к шине устройство и иерархия эта постоянно меняется в зависимости от того, какое устройство запросило у арбитра шины разрешения на передачу данных и кому. За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge.

Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP.

AGP (Accelerated Graphics Port – ускоренный графический порт)

Видеокарта (видеоадаптер)
За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: МОЛ (монохромный); CGA (4 цвета); EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640х480, 800х600,1024х768,1152х864; 1280х1024 точек и далее).

Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, тем самым, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения. Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало.

Видеоускорение - одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнения математических вычислений в основном процессоре компьютера, а чисто аппаратным путем - преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видеокарта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемой к видеоадаптеру.

Видеоадаптер - устройство, требующее особенно высокой скорости передачи данных. Как при внедрении локальной шины VLB, так и при внедрении локальной шины PCI видеоадаптер всегда был первым устройством, «врезаемым» в новую шину. Сегодня параметры шины PCI уже не соответствуют требованиям видеоадаптеров, поэтому для них разработана отдельная шина, получившая название AGP (Advanced Graphic Port - усовершенствованный графический порт). Частота этой шины соответствует частоте шины PCI (33 МГц или 66 МГц), но она имеет много более высокую пропускную способность - до 1066 Мбайт/с (в режиме четырехкратного умножения).

Рис.4. Принцип работы системной памяти (включая AGP)

На материнской плате этот порт существует в единственном виде (а больше и не к чему). Ни физически, ни логически он не зависит от PCI. Первый стандарт AGP 1.0 появился в 1996 году благодаря инженерам фирмы Intel.

Этой спецификации соответствовала тактовая частота 66,66 МГц, режим сигнализации 1х и 2х, а также напряжение равное 3,3 В. Следующая версия, AGP 2.0, появилась на свет в 1998 году и имела режим сигнализации 4х и рабочее напряжение равное 1,5 В. Скорость передачи данных – 533 Мбайт/сек (2х) и 1066 Мбайт/сек (4х). А чего же это такое – 2х, 4х? Основной (базовый) режим AGP называется 1х. В этом режиме происходит одиночная передача данных за каждый цикл. В режиме 2х передача происходит два раза за цикл. В режиме 4х передача данных происходит четыре раза за каждый цикл. И так далее. Ширина AGP 1.0 – 32 бита. Большим достижением AGP является то, что эта спецификация позволяет получить быстрый доступ к оперативной памяти, так как является локальной.

PCMCIA

(Personal Computer Метолу Card International Association - стандарт международной ассоциации производителей плат памяти для персональных компьютеров)

Этот стандарт определяет интерфейс подключения плоских карт памяти небольших размеров и используется в портативных персональных компьютерах.

FSB - (front Side Bus)

Шина PCI, появившаяся в компьютерах на базе процессоров Intel Pentium как локальная шина, предназначенная для связи процессора с оперативной памятью, недолго оставалась в этом качестве. Сегодня она используется только как шина для подключения внешних устройств, а для связи процессора и памяти, начиная с процессора Intel Pentium Pro используется специальная шина, получившая название front Side Bus (FSB). Эта шина работает на очень высокой частоте 100-125 МГц. В настоящее время внедряются материнские платы с частотой шины FSB 133 МГц и ведутся разработки плат с частотой до 200 МГц. Частота шины FSB является одним из основных потребительских параметров - именно он и указывается в спецификации материнской платы. Пропускная способность шины FSB при частоте 100 МГц составляет порядка 800 Мбайт/с.

USB - (Universal Serial Bus - универсальная последовательная магистраль)

Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика и составляет до 1,5 Мбит/с, но для таких устройств, как клавиатура, мышь, модем, джойстик и т. п., этого достаточно. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в -«горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

Звуковая карта

Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. Она подключается к одному из слотов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки, подключаемые к выходу звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Порты

Порты - это разъемы на задней панели системного блока компьютера, которые служат для соединения с компьютером периферийных устройств, таких как монитор, клавиатура, мышка, принтер, сканер, и т.д.


Параллельный порт

Параллельный порт - это скоростной порт, через который сигнал передается в двух направлениях по 8 параллельным линиям.


Параллельный порт был разработан в 1981 году и использовался в первых персональных компьютерах. Тогда он назывался нормальным.

Скорость передачи данных через параллельный порт - от 800 Кбит/сек до 16 Мбит/сек.

На схемах параллельные порты обозначают LP1, LP2 и т.д. (LP - Line Printer).

Через параллельные порты с компьютером соединяются принтеры, стриммеры и другие устройства, требующие высокую скорость передачи данных. Параллельные порты используют также для соединения двух компьютеров между собой.

Последовательный порт

Последовательный порт (Serial port или COM-port: Communications port) - это порт, через который данные передаются только в одном направлении в каждый момент времени.


Данные передаются последовательно сериями сначала в одном, потом в другом направлении.

Через последовательные порты подключаются устройствва, которые не требуют высокой скорости передачи данных - мышки, клавиатуры, модемы.

Скорость передачи данных через последовательный порт - 115 Кбит/сек.

На схемах параллельные порты обозначают COM1, COM2 и т.д.

USB порт

USB (Universal Serial Bus) - универсальный последовательный порт. Это порт, который позволяет подключать практически любые периферийные устройства.


В настоящее время производители периферийных устройств выпускают их в двух вариантах - с обычными для этих устройств портами (разными для разных устройств) и USB. Существуют и мышки, и клавиатуры для USB порта.

Важной особенностью USB портов является то, что они поддерживают технологию Plug and Play , т.е. при подключении устройства не требуется устанавливать драйвер для него, кроме того, порты USB поддерживают возможность "горячего подключения" - подключения при работающем компьютере.

Порт USB был разработан в 1998 году. Тогда он назывался просто USB. После того, как был разработан более скоростной порт, то существующий назвали USB 1.1, а новый - USB 2.

Разработка высокоскоростной технологии и, соответственно, порта USB 2 началась по инициативе компании Intel. В разработках участвовали кроме Intel и другие компании, в том числе Microsoft. Спецификация USB 2 была принята в апреле 2000 года.

Скорость передачи данных через порт USB 1.1 - 12 Мбит/сек. Для мышек и клавиатуры - 1,5 Мбит/сек.

Скорость передачи данных через порт USB 2 - 480 Мбит/сек.

PS/2 порт

Порты PS/2 - это параллельные порты для мышки и клавиатуры.


Порт PS/2 был разработан компанией IBM в 1987 году и первоначально эти порты появились на компьютерах IBM. Эти порты и коннекторы для портов были значительно меньше по сравнению с существующими портами и коннекторами AT/MIDI, поэтому и другие производители стали использовать порты PS/2 в своих компьютерах.

Порты PS/2 бывают 5-контактными и 6-контактными, но для пользователя они идентичны.

AT/MIDI порт

AT/MIDI порт (Musical Instrument Digital Interface - соединение с цифровыми музыкальными инструментами) - это порты через которые первоначально (до PS/2) подключались клавиатуры, а в настоящее время, в основном подключаются музыкальные клавиатуры и синтезаторы.

Порт FireWire

FireWire - дословно - огненный провод (произносится "файр вайр") - это последовательный порт, поддерживающий скорость передачи данных в 400 Мбит/сек.


Этот порт служит для подключения к компьютеру видео устройств, таких как, например, видеомагнитофон, а также других устройств, требующих быстрой передачи большого объема информации, например, внешних жестких дисков.

Порты FireWire поддерживают технологию Plug and Play и "горячего подключения".

Порты FireWire бывают двух типов. В большинстве настольных компьютерах используются 6-контактные порты, а в ноутбуках - 4-контактные.



6-контактный порт FireWire
4-контактный порт FireWire

Контроллеры

Электронные схемы, управляющие различными устройствами компьютера, называются контроллерами . Во всех компьютерах IВМ РС имеются контроллеры для управления клавиатурой монитором, дисководами для дискет, жестким диском и т.д.

Блок питания

Блок питания компьютера представляет собой металлическую коробку, которая располагается внутри системного блока вплотную к его задней панели.

На заднюю панель выводятся разъем для кабеля питания, выключатель, отверстия для вентилятора блока питания.

В некоторых блоках питания имеется дополнительный разъем для подключения кабеля питания монитора. Этот разъем используется, если нет свободных электрических розеток. Специальным кабелем можно подключить питание монитора через блок питания компьютера. При этом мощность блока питания компьютера не расходуется, т.к. этот дополнительный разъем просто соединен параллельно с основным разъемом и, когда к основному разъему подключен кабель питания и он включен в электрическую розетку, то дополнительный разъем сам становится розеткой.
В блоке питания располагается трансформатор, выпрямитель и охлаждающий вентилятор. Внутрь компьютера из блока питания выходит несколько комплектов проводов для подключения к электрическому питанию системной платы, жесткого диска, дисководов. Для подключения дополнительных устройств, например дополнительного оптического дисковода, стриммера, в блоке питания предусмотрены свободные комплекты проводов.

пример из «жизни» компьютеров

Компания Seiko Epson сообщила о расширении линейки графических процессоров для мобильных устройств (mobile graphics engine) моделью S1D13732, которая является контроллеров ЖК-экранов для мобильных телефонов, КПК и мобильных информационных терминалов, оснащенных одномегапиксельной камерой. Образцы чипа в 161-контактном FCBGA-корпусе (8x8x1 мм) будут предлагаться заказчикам в ближайшее время.

S1D13732 отличается от предыдущих моделей, в частности, S1D13715, серийно выпускаемой в настоящее время, более высокой скоростью обработки графики. ЖК-контроллер обеспечивает аппаратную поддержку MPEG-4, а также H.263 (стандарта сжатия видео для Европы). Помимо всего прочего контроллер ЖК-экрана позволяет снизить энергопотребление сотовых телефонов, а блок, отвечающий за графику, предоставляет возможность записи и воспроизведения видео без специализированного ПО, а, значит, оснащать устройства ЦП с низким энергопотреблением.

S1D13732 оснащен 448 Кб встроенной памяти, интерфейсом камеры (поддерживаемые камеры – с разрешением до 1,3 млн. пикселей), интерфейсом двух ЖК-экранов с максимальным разрешением 240x320 пикселей.

Технологический институт

Федерального государственного автономного образовательного учреждения

высшего профессионального образования

«Южный федеральный университет» в г. Таганроге

Факультет управления в экономических и социальных системах

Кафедра Государственного и муниципального права и управления

Реферат

«Внутренние устройства системного блока компьютера»

Выполнила студентка гр. МЗ-70 Руденко Е.И.

Проверил Тюшняков В.Н.

Таганрог 2011

Цель.

Целью написания данного реферата является изучение внутренностей системного блока компьютера и их основных свойств и характеристик. Так же получить основы знаний о функционировании некоторых элементов.

Общие сведения.

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, - внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и дли­тельного хранения данных, также называют периферийными.

По внешнему виду системные блоки различаются формой корпуса. Корпуса персо­нальных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный (mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. Прежним стандартом корпуса персональных компьютеров был форм-фактор Л Г, в настоящее время в основном используются корпуса форм-фактора АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы (см. ниже).

Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 250-300 Вт.

Внутренние устройства системного блока

Материнская плата

Материнская плата - основная плата персонального компьютера. На ней размещаются:

  • процессор - основная микросхема, выполняющая большинство математических
    и логических операций;
  • микропроцессорный комплект (чипсет) - набор микросхем, управляющих рабо­той внутренних устройств компьютера и определяющих основные функцио­нальные возможности материнской платы;
  • шины - наборы проводников, по которым происходит обмен сигналами между
    внутренними устройствами компьютера;
  • оперативная память (оперативное запоминающее устройство, ОЗУ) - набор
    микросхем, предназначенных для временного хранения данных, когда компью­тер включен;
  • ПЗУ (постоянное запоминающее устройство) - микросхема, предназначенная
    для длительного хранения данных, в том числе и когда компьютер выключен;
  • разъемы для подключения дополнительных устройств (слоты).

Устройства, входящие в состав материнской платы, рассмотрим отдельно.

Жесткий диск

Жесткий диск - основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа сборных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот «диск» имеет не две поверхности.

Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных. При высоких скоростях вращения дисков (90-250 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферримагнитных частиц, образующих покрытие диска. Так осуществляется запись данных на магнитный диск.

Операция считывания происходит в обратном порядке. Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство - контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контроллеров дисков частично интегрированы в сам жесткий диск, а частично выполняются микросхемами, вхо­дящими в микропроцессорный комплект (чипсет).

Дисковод гибких дисков

Информация на жестком диске может храниться годами, однако иногда требуется ее перенос с одного компьютера на другой. Несмотря на свое название, жесткий диск является весьма хрупким прибором, чувствительным к перегрузкам, ударам и толчкам. Теоретически, переносить информацию с одного рабочего места на другое путем переноса жесткого диска возможно, и в некоторых случаях так и поступают, но все-таки этот прием считается нетехнологичным, поскольку требует особой акку­ратности и определенной квалификации.

Для оперативного переноса небольших объемов информации используют так называемые гибкие магнитные диски (дискеты), которые вставляют в специальный накопитель - дисковод. Приемное отверстие накопителя находится на лицевой панели системного блока. Правильное направление подачи гибкого диска отмечено стрелкой на его пластиковом кожухе.

Основными параметрами гибких дисков являются: технологический размер (измеря­ется в дюймах), плотность записи (измеряется в кратных единицах) и полная емкость.

Первый компьютер IBM PC (родоначальник платформы) был выпущен в 1981 году. К нему можно было подключить внешний накопитель, использующий односто­ронние гибкие диски диаметром 5,25 дюйма. Емкость диска составляла 160 Кбайт. В следующем году появились аналогичные двусторонние диски емкостью 320 Кбайт. Начиная с 1984 года выпускались гибкие диски 5,25 дюйма высокой плотности (1,2 Мбайт). В наши дни диски размером 5,25 дюйма не используются, так что производство и применение соответствующих дисководов практически прекратилось с середины 90-х годов.

Гибкие диски размером 3,5 дюйма выпускают с 1980 года. Односторонний диск обычной плотности имел емкость 180 Кбайт, двусторонний - 360 Кбайт, а двусто ронний двойной плотности - 720 Кбайт. Ныне стандартными считают диски разме­ром 3,5 дюйма высокой плотности. Они имеют емкость 1440 Кбайт (1,4 Мбайт) и маркируются буквами HD ( high density - высокая плотность).

Дисковод компакт-дисков CD - ROM

В период 1994-1995 годов в базовую конфигурацию персональных компьютеров перестали включать дисководы гибких дисков диаметром 5,25 дюйма, но вместо них стандартной стала считаться установка дисковода CD - ROM , имеющего такие же внешние размеры.

Аббревиатура CD - ROM ( Compact Disc Read - Only Memory ) перево­дится на русский язык как посто­ янное запоминающее устройство на основе компакт-диска. Прин­цип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверх­ности диска. Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 Мбайт данных.

Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD - ROM относят к аппаратным средствам мультимедиа. Программные продукты, распространяемые на компакт-дисках, назы­вают мультимедийными изданиями. Сегодня мультимедийные издания завоевы­вают все более прочное место среди других традиционных видов изданий. Так, например, существуют книги, альбомы, энциклопедии и даже периодические изда­ния (электронные журналы), выпускаемые на CD - ROM .

Основным недостатком стандартных дисководов CD - ROM является невозможность записи данных, но параллельно с ними сегодня существуют и устройства записи компакт-дисков - дисководы CD - RW . Для записи используются специальные заго­товки. Некоторые из них допускают только однократную запись (после записи диск превращается в обычный компакт-диск CD - ROM , доступный только для чтения), дру­гие позволяют стереть ранее записанную информацию и выполнить запись заново.

Основным параметром дисководов CD - ROM является скорость чтения данных. Она измеряется в кратных долях. За единицу измерения принята скорость чтения музы­кальных компакт-дисков, составляющая в пересчете на данные 150 Кбайт/с.

Видеокарта (видеоадаптер)

Совместно с монитором видеокарта образует видеоподсистему персонального ком­пьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональ­ной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные о ярко­сти отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший назва­ние видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видео­ картой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования персональных компьютеров сменилось несколько стандар­тов видеоадаптеров: MDA (монохромный)] CGA (4 цвета)", EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA , обеспечива­ющие по выбору воспроизведение до 16,7 миллионов цветов с возможностью про­извольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее).

Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, соответственно, тем меньше видимый размер элементов изображения.

Звуковая карта

Звуковая карта явилась одним из наиболее поздних усовершенствований персо­нального компьютера. Она устанавливается в один из разъемов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработ­кой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки, подключаемые к выходу звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Основным параметром звуковой карты является разрядность, определяющая коли­чество битов, используемых при преобразовании сигналов из аналоговой в цифро­вую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняш­него дня являются 16 разрядов, а наибольшее распространение имеют 32-разряд­ные и 64-разрядные устройства.

В области воспроизведения звука наиболее сложно обстоит дело со стандартиза­цией. В отсутствие единых централизованных стандартов, стандартом де-факто стали устройства, совместимые с устройством SoundBlaster , торговая марка на кото­рое принадлежит компании Creative Labs .

В последнее время обработка звука рассматривается как относительно простая операция, которую, в связи с возросшей мощностью процессора, можно возложить и на него. В отсутствие повышенных требований к качеству звука можно исполь­зовать интегрированные звуковые системы, в которых функции обработки звука выполняются центральным процессором и микросхемами материнской платы. В этом случае колонки или иное устройство воспроизведения звука подключается к гнез­дам, установленным непосредственно на материнской плате.

Системы, расположенные на материнской плате

Оперативная память

Оперативная память ( RAM - Random Access Memory ) - это массив кристалли­ческих ячеек, способных хранить данные. Существует много различных типов опе­ративной памяти, но с точки зрения физического принципа действия различают динамическую память ( DRAM ) и статическую память ( SRAM ).

Ячейки динамической памяти ( DRAM ) можно представить в виде микроконденса­торов, способных накапливать заряд на своих обкладках. Это наиболее распрост­раненный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеи­ваться в пространстве, причем весьма быстро. Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресур­сов вычислительной системы.

Ячейки статической памяти ( SRAM ) можно представить как электронные микро­элементы - триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспо­могательной памяти (так называемой кэш-памяти), предназначенной для оптими­зации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В большинстве современных процессоров предельный размер адреса обычно составляет 32 разряда, а это означает, что всего независимых адресов может быть 2 32 . Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных.

Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 2 32 байт = 4 Гбайт. Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предель­ный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно не может превосходить нескольких Гбайт. Минимальный объем памяти определяется требо­ваниями операционной системы и для современных компьютеров составляет 128 Мбайт.

Представление о том, сколько оперативной памяти должно быть в типовом компью­тере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти в 256 Мбайт, но тенденция к росту сохраняется.

Оперативная память в компьютере размещается на стандартных панельках, называ­емых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться непол­ная разборка узлов системного блока, и в таких случаях операцию поручают специ­алистам.

Основными характеристиками модулей оперативной памяти являются объем памяти и скорость передачи данных. Сегодня наиболее распространены модули объемом 128-512 Мбайт. Скорость передачи данных определяет максимальную пропуск­ную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа. При этом учитывается время доступа к памяти, ширина шины и дополнительные возможности, такие как передача нескольких сигналов за один такт работы. Одина­ковые по объему модули могут иметь разные скоростные характеристики.

Иногда в качестве определяющей характеристики памяти используют время доступа. Оно измеряется в миллиардных долях секунды {наносекундах, не). Для современных модулей памяти это значение может составлять 5 не, а для особо быстрой памяти, используемой в основном в видеокартах, - снижаться до 2-3 не.

Процессор

Процессор - основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опера­тивной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основ­ных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров семейства Pentium (а именно они наиболее распро­странены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копиро­вания данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компью­терах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся про­граммы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находя­щиеся во внешних портах процессора. Часть данных он интерпретирует непосред­ственно как данные, часть данных - как адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, отно­сящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемы.

Процессоры с расширенной и сокращенной системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров семейства Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной систе­ мой команд - CISC -процессорами ( CISC - Complex Instruction Set Computing ).

В противоположность C/SC-процессорам в середине 80-х годов появились процес­соры архитектуры RISC с сокращенной системой команд ( RISC - Reduced Instruction Set Computing ). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Таким образом, программы, состоя­щие из простейших команд, выполняются этими процессорами много быстрее. Оборотная сторона сокращенного набора команд состоит в том, что сложные опера­ции приходится эмулировать далеко не эффективной последовательностью прос­тейших команд сокращенного набора.

В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

CISC-процессоры используют в универсальных вычислительных системах;

RISC-процессоры используют в специализированных вычислительных системах
или устройствах, ориентированных на выполнение единообразных операций.

Персональные компьютеры платформы IBM PC ориентированы на использование CISC-процессоров.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим про­цессором. Процессоры, имеющие разные системы команд, как правило, несовмес­тимы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разряд­ный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, несколько моделей Intel Pentium] несколько моделей Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, IntelXeon, Intel Pentium III, Intel Pentium 4 и другие. Все эти модели, и не только они, а также многие модели процессоров компании AMD и некоторых других производителей относятся к семейству х86 обладают совместимостью по принципу «сверху вниз».

Принцип совместимости «сверху вниз» - это пример неполной совместимости когда каждый новый процессор «понимает» все команды своих предшественников но не наоборот. Это естественно, поскольку двадцать лет назад разработчики процессоров не могли предусмотреть систему команд, нужную для современных про грамм. Благодаря такой совместимости на современном компьютере можно выполнять любые программы, созданные в последние десятилетия для любого и предшествующих компьютеров, принадлежащего той же аппаратной платформе

Основные параметры процессоров. Основными параметрами процессоров явля­ются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность. Первые процессоры х86 могли

работать с частотой не выше 4,77 МГц, а сего дня рабочие частоты некоторых про­цессоров уже превосходят 3 миллиарда тактов в секунду (3 ГГц).

Микросхема ПЗУ и система BIOS

В момент включения компьютера в его оперативной памяти нет ничего - ни дан­ных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения. Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выстав­ленному адресу за своей первой командой и далее начинает работать по программам.

Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти - постоянное запоминающее уст­ ройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информа­цию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» - их записывают туда на этапе изготовления микросхемы.

Шинные интерфейсы материнской платы

Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета). От архитектуры этих элементов во мно­гом зависит производительность компьютера.

ISA. Историческим достижением компьютеров платформы IBM PC стало внедре­ние почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA ( Industry Standard Architecture ). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина еще может использоваться в некото­рых компьютерах для подключения сравнительно «медленных» внешних устройств, например звуковых карт и модемов.

EISA. Расширением стандарта ISA стал стандарт EISA ( Extended ISA ), отличаю­щийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA , в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA / EISA и устройств, подключа­емых к ним, практически прекращен.

VLB. Название интерфейса переводится как локальная шина стандарта VESA ( VESA Local Bus ). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поко­лений ( Intel 80386 и Intel 80486) частоты основной шины (в качестве основной использовалась шина IS A / EISA ) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повы­шенной пропускной способности, - так появился стандарт VLB , который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую про­пускную способность до 130 Мбайт/с.

Основным недостатком интерфейса VLB стало то, что предельная частота локаль­ной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 МГц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 МГц возможно подключение двух, а при частоте 33 МГц - трех уст­ройств. Активное использование шины VLB продолжалось очень недолго, она была вскоре вытеснена шиной PCL

PCI. Интерфейс PCI ( Peripheral Component Interconnect - стандарт подключения внешних компонентов) был введен в персональных компьютерах во времена про­цессора 80486 и первых версий Pentium . По своей сути это тоже интерфейс локаль­ной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной ком­пьютера ( ISA / EISA ) используются специальные интерфейсные преобразователи -мосты PCI ( PCI Bridge ). В современных компьютерах функции моста PCI выпол­няют микросхемы микропроцессорного комплекта (чипсета).

Данный интерфейс поддерживает частоту шины 33 МГц и обеспечивает пропуск­ную способность 132 Мбайт/с. Последние версии интерфейса поддерживают час­тоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разряд­ных данных и 528 Мбайт/с для 64-разрядных данных.

Важным нововведением, реализованным этим стандартом, стала поддержка так называемого режима plug - and - play , впоследствии оформившегося в промышлен­ный стандарт на самоустанавливающиеся устройства. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PCI про­исходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти.

Конфликты между устройствами за обладание одними и теми же ресурсами (номе­рами прерываний, адресами портов и каналами прямого доступа к памяти) вызы­вают массу проблем у пользователей при установке устройств, подключаемых к шине ISA . С появлением интерфейса PCI и с оформлением стандарта plug - and - play появилась возможность выполнять установку новых устройств с помощью автоматических программных средств - эти функции во многом были возложены на операционную систему.

FSB. Шина PC/, появившаяся в компьютерах на базе процессоров Intel Pentium как локальная шина, предназначенная для связи процессора с оперативной памя­тью, недолго оставалась в этом качестве. Сегодня она используется только как шина для подключения внешних устройств, а для связи процессора и памяти, начиная с процессора Intel Pentium Pro , используется специальная шина, получившая назва­ние Front Side Bus ( FSB ). Эта шина работает на частоте 100-200 МГц. Частота шины FSB является одним из основных потребительских параметров - именно он и ука­зывается в спецификации материнской платы. Современные типы памяти ( DDR SDRAM , RDRAM ) способны передавать несколько сигналов за один такт шины FSB , что повышает скорость обмена данными с оперативной памятью.

AGP. Видеоадаптер - устройство, требующее особенно высокой скорости передачи данных. Как при внедрении локальной шины VLB , так и при внедрении локальной шины PCI видеоадаптер всегда был первым устройством, «врезаемым» в новую шину. Когда параметры шины PCI перестали соответствовать требованиям видео­адаптеров, для них была разработана отдельная шина, получившая название A GP ( Advanced Graphic Port - усовершенствованный графический порт). Частота этой шины соответствует частоте шины PC/(33 МГц или 66 МГц), но она имеет много более высокую пропускную способность за счет передачи нескольких сигналов за один такт. Число сигналов, передаваемых за один такт, указывается в виде множи­теля, например A GP4x (в этом режиме скорость передачи достигает 1066 Мбайт/с). Последняя версия шины A GP имеет кратность 8х.

PCMCIA( Personal Computer Memory Card International Association - стандарт меж­дународной ассоциации производителей плат памяти для персональных компью­теров). Этот стандарт определяет интерфейс подключения плоских карт памяти небольших размеров и используется в портативных персональных компьютерах.

USB( Universal Serial Bus - универсальная последовательная магистраль). Этоодно из последних нововведений в архитектурах материнских плат. Этот стандарт опре­деляет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устрой­ство подключается к предыдущему). Производительность шины USB относительно невелика, но вполне достаточна для таких устройств, как клавиатура, мышь, модем, джойстик, принтер и т. п. Удобство шины состоит в том, что она практически исклю­чает конфликты между различным оборудованием, позволяет подключать и отклю­чать устройства в «горячем режиме» (не выключая компьютер) и позволяет объеди­нять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

PCI-E (Peripheral Component Interconnect - Express - стандарт подключения внешних компонентов ) – появился совершенно недавно, его основная роль заменить AGP как уже не справляющуюся с потоком видео данных. скорость передачи превышает 2100 Мбайт/с


Заключение

По итогам написания реферата можно сделать следующие выводы: системный блок это очень сложное устройство, являющееся главным элементом в архитектуре компьютера. Состоящий из большого количества отдельных и зачастую неотъемлемых элементов. В системном блоке проходят все вычислительные процессы. И к нему подключается абсолютно вся периферия компьютера.


Используемая литература

1. Энциклопедия для детей. Т. 14. Техника / Глав. ред. М. Д. Аксёнова. - М.: Аванта+, 1999 - 688 с.: ил.

2. Энциклопедия для детей. Том 22. Информатика/ Глав. ред. Е. А. Хлебалина, вед. науч. ред. А.Г.Леонов.- М.: Аванта+ 2003.-624с.: ил.

3. www.ixbit.com

4. Информатика. Базовый курс. Для ВУЗов 2-е издание / Под ред. С. В. Симоновича. СПб.: Питер, 2007. -640с.: ил.

Здравствуйте, устройство компьютера — системный блок, из чего он состоит, сегодня мы подробно поговорим на эту тему. В прошлом выпуске блога я рассказал и показал .

В рамках данной статьи я подробно расскажу и покажу устройство компьютера, из чего состоят наши персональные компьютеры, дополнительные устройства компьютера и много другое. Материал довольно-таки обширный, поэтому разделю его на две части. В первой мы поговорим про устройство системного блока, а во второй про .

Коробка с деталями

Две недели назад родители попросили купить и собрать им персональный компьютер. Около недели я изучал рынок и подбирал нужные компоненты. Общая сумма вышла около 1300 $.

Когда выбор был сделан, мы зашли в нужный компьютерный магазин, купили все запчасти и этим же вечером я все собрал в одну кучу (системный блок и все остальное). Загрузил нужное программное обеспечение, все показал и рассказал, так же немного объяснил родителям как им пользоваться.

Многие из вас, кто сейчас читает данный материал, немного понимают и разбираются в устройстве компьютера, но есть так же и те, кто в этом почти ничего не понимает. Так вот, специально для вас, я опубликовал данный материал. Если вы все знаете и вам не интересно, то можете смело закрыть данную страничку и заняться любым другим делом.

Компьютер состоит из множества деталей, но по большой части их можно разделить на два класса:

Системный блок — это корпус компьютера (его называют по разному процессор, черная коробка, компьютер и другие варианты), в который напичкано множество запчастей. Он обычно расположен под столом или на нем, к нему подсоединены все периферийные устройства.

Периферийные устройства — к ним относятся все штуки, которые подсоединяются к системному блоку включая монитор, колонки или наушники, мышь и клавиатура, принтер, модем, сканер, веб-камера и остальные.

Системный блок

Здесь я вам подробно расскажу из чего состоит системный блок — устройство компьютера. Если вам интересно, можете взять отвертку и аккуратно открутить два небольших шурупа которые расположены сзади вашего компьютера, после чего снять одну из боковых крышек и заглянуть внутрь.

Небольшое предупреждение. Если вы недавно взяли ваш компьютер, он находиться на гарантии и есть гарантийные стикеры, расположенные на местах крепления боковых крышек, то лучше не срывать эти пломбы. В противном случае вы можете лишиться вашей гарантии.

Постараюсь описать все его компоненты доступным для всех языком:

  1. Корпус
  2. Системная плата
  3. Микропроцессор
  4. Память компьютера — ОЗУ, ПЗУ
  5. Видеокарта
  6. Блок питания
  7. Жесткий диск HDD
  8. Оптический привод — CD, DVD ROM
  9. Флопик — накопитель на гибких магнитных дисках (дискетах) FDD
  10. Картридер — существуют как внутренние так и внешние
  11. Разъемы и порты периферийных устройств

Так же в системном блоке могут быть и другие устройства, например PCI-модем; сетевая карта; звуковая карта; различные карты расширения и другое. Флопика и картридера у меня нет, поэтому на фотографиях они не отображены. Рассмотрим подробнее каждый из перечисленных выше компонентов.

Корпус

Корпус — выполняет функцию коробки, где собраны все компоненты.

Они бывают разные как в цветовой гамме, так и внешнего вида.

Системная плата

Системная плата — её чаще называют материнская плата или «мамка». Она выполняет множество функций и содержит множество важных компонентов.

В неё вставляется микропроцессор (процессор), оперативная память, видеокарта и другие PCI-карты. К материнской плате так же подсоединены жесткий диск, оптический привод, блок питания, а также периферийные устройства, о которых мы поговорим чуть позднее.

Микропроцессор

Микропроцессор — центральный процессор компьютера или «камень». Он выполняет роль головного мозга, если сравнить его с органами человека. На сегодняшний день существует две распространенные фирмы, которые их производят — это Intel и AMD.

Чем больше ядер и выше разрядность вашего процессора, тем быстрее и больше операций в секунду он может выполнять. Центральный процессор ломается очень редко, но такое бывает, так что будьте к этому готовы.

Компьютерная память

Память компьютера — делится на внешнюю и внутреннюю. Во внутреннюю память входят такие запоминающие устройства (ЗУ) ПЗУ, ОЗУ, ROM, RAM и КЭШ. Во внешнюю память входят FDD, HDD, CD, DVD-ROM, USB (флешки, жесткие диски) и твердотельные запоминающие устройства SSD.

ОЗУ (оперативное запоминающее устройство) имеет высокое быстродействие, которое использует центральный процессор чтобы хранить кратковременную информацию, в то время, когда вы работаете за компьютером. Для нормальной работы компьютера рекомендуется использовать от 1 до 4 Гигабайт оперативки и выше. У меня на компьютере установлено 6 Гигабайт.

Бывают случаи, что попадаются планки памяти с битыми секторами, при этом ваш компьютер может работать не корректно, зависать, перезагружаться или выдавать синий экран смерти. Для того чтобы проверить оперативку можно скачать программу Memtest и проверить её на наличие битых и поврежденных секторов.

ПЗУ (постоянное запоминающее устройство) — оно хранит постоянную справочную и программную информация. К такому виду информации относятся настройки вашего компьютера в Биосе.

Биос — это базовая система ввода вывода (мозжечок компьютера). Первая программа, которая включается при запуске компьютера и проверяет на работоспособность все его компоненты это Биос.

Если все хорошо, то издает один сигнал «пик», если что-то не в порядке, то может издавать разные сигналы или вообще молчать. В некоторых компьютерах нет спикера, который оповещает пользователя о своей работе (маленькая пещалка). Если вам стала интересна эта программа то можете прочитать немного о нем в статье .

CMOS — это вид памяти, в которой хранятся все параметры конфигурации вашего компьютера. Как только вы включаете компьютер, она проверяет все сохраненные ранее параметры. Для того чтобы что-то изменить, нужно зайти в Биос вкладку Setup и поменять необходимые настройки, например выставить загрузку с CD-ROM, HDD или USB.

Кэш — сверхскоростной оперативный и промежуточный вид памяти.

Видеокарта

Видеокарта преобразовывает изображение полученное на материнской плате и выдает его на мониторе (телевизоре). Чем мощнее у вас видеокарта, тем больше игр и разных программ вы можете запускать на своем компьютере. Если у вас сломается внешняя видеокарта, то её в любой момент можно заменить.

Но если у вас сгорит внутренняя видеокарта, то придется менять полностью материнскую плату. У меня на системной плате нет внутренней видеокарты, поэтому я пользуюсь внешней. У большинства материнских плат присутствует внутренний (интегрированный) видеоадаптер.

Блок питания

В блок питания поступает напряжение около 220 вольт, которое преобразовывается в более меньшее напряжение и после этого раздается и питает все нужные компоненты системного блока.

Если у вас сгорел блок питания, то его можно купить в районе 40-60 $.

Жесткий диск

На жестком диске HDD хранится вся физическая память, которой вы заполняете свой компьютер музыка, фильмы, программы, различные документы, операционные системы и так далее. Имеется два типа жестких дисков, которые подсоединяются к материнской плате и обмениваются с ней информацией IDE и SATA.

IDE один из первых стандартов, пример которого, вы можете взять жесткий диск и увидеть сзади него маленькие желтые иголочки. Сейчас в новых компьютерах используется стандарт SATA. У него более быстрая скорость обмена данными если сравнивать с предшественником. По вместимости данных они бывают разные от 8 -16 Гигабайт до 8 — 16 Терабайт. В одном терабайте содержится 1024 гигабайта.

Оптический привод

С помощью оптического привода можно записывать и читать диски с информацией.

Приводы бывают CD-ROM, DVD-ROM и BD-ROM.

Флопик

Это гибкий носитель на магнитном диске FDD. Флопик читает и записывает дискеты. Сейчас ими уже почти никто не пользуется, возможно только некоторые банки. На одной такой дискете помещается 1.44 Мегабайта.

Картридер

Картридер — это вспомогательное устройство, с помощью которого можно просмотреть или записать данные на маленьких флешках Compact Flash, Memory Stick, SD Card, Micro SD, SDXC, SDHC от сотовых телефонов, фотоаппаратов и подобной техники. Они бывают как внутренние в системном блоке, так и внешние, которые можно подсоединить к компьютеру через USB.

Разъемы периферийных устройств

К нашему компьютеру можно подключать различные периферийные устройства такие как клавиатура, мышь, веб-камера, флешка принтер и так далее. Существуют следующие типы разъемов LPT, COM и USB.

На сегодняшний день почти все подобные устройства подключаются к компьютеру через многофункциональный разъем USB, который можно найти сзади и спереди системного блока.

Системы охлаждения и вентиляции

В компьютере может находиться от двух и более вентиляторов (кулеров). Все зависит от корпуса и комплектующих вашего компьютера.

Первый кулер расположен над центральным процессором и охлаждает его по мере нагрева.

Второй вентилятор стоит в блоке питания, в зависимости от его мощности, кулер может располагаться как сзади небольшой, так и снизу чуть побольше.

В некоторых корпусах установлены родные кулера на заводе изготовители, их можно найти на задней стенке корпуса. Если их нет, то можно купить в любом компьютерном магазине, они недорого стоят.

На дорогих системных платах стоят небольшие вентиляторы, которые охлаждают северный или южный мост материнки. Это большие микросхемы (микрочипы) на материнской плате, сверху которых иногда можно встретить небольшой железный радиатор охлаждения.

На моей материнской плате не предусмотрено дополнительных кулеров, но у меня иногда очень сильно нагревается северный мост. Для того чтобы его охлаждать, я купил небольшой вентилятор и пристроил его на радиатор своего северного моста.

У всех более-менее нормальных видеокартах должен стоять хотя бы один кулер охлаждения. Если у вас хорошая видеокарта, то таких вентиляторов может быть несколько или даже три. У меня средняя видеокарта с одним кулером.

Охлаждение HDD

Реже всего можно встретить системы охлаждения на жестких дисках. Для чего они нужны, спросите вы меня. Если у вас нагревается жесткий диск, то все процессы, которые происходят внутри него замедляются, что может привести к зависанию или неправильной работе вашего компьютера.

Оптимальная температура работы HDD 25 — 35 градусов Цельсия. Если температура поднимается выше, срок службы диска уменьшается. Продаются специальные крепления с одним или двумя маленькими вентиляторами. Прикручиваете их к своему жесткому диску и вуаля.

Проблемы повышенных температур в основном испытывают жесткие диски, которые расположены в ноутбуках. Из-за недостаточного пространства для вентиляции воздуха и системы охлаждения, температура поднимается, что отрицательно сказывается на сроке его службы. Для того, чтобы этого избежать, рекомендую делать профилактику от пыли как минимум один раз в год, не только ноутбука, но и персонального компьютера.

Устройство компьютера изнутри, системный блок в 3D | сайт

Ну вот в принципе и весь краткий обзор устройство компьютера, а именно системного блока.

Итоги

Сегодня мы с вами подробного поговорили про устройство компьютера системного блока. Надеюсь вам было интересно. В следующей части я расскажу про устройство компьютера — периферийные устройства. Чтобы не пропустить важную информацию подписывайтесь на мои рассылки.

Возможно у вас появились или возникли вопросы, связанные с устройством компьютера системного блока, можете задавать их ниже в комментариях к этой статье, а так же воспользоваться формой со мной.

Благодарю вас что читаете меня в

Здравствуйте уважаемые посетители блога сайт. Сегодня поговорим об устройствах компьютера, или как обычно говорят «железках», которые можно найти в системном блоке компьютера. Таким образом, вы поймете, из чего состоит компьютер. Аппаратное устройство компьютера или как модно говорить «железо», остается тайной даже для многих опытных пользователей. В данной статье расскажу про аппаратные устройства, тем самым восполним пробел, конечно если он у вас есть , а если вы с ними знакомы, то освежим немного память.

В первую очередь разделим то, что принято называть «компьютер» на две группы:

  • Системный блок . Это тот самый большой (или не очень большой) ящик, к которому все подключено.
  • Периферийные устройства . О периферийных устройствах можете почитать в моей статье « » Это все остальные устройства, которые помогают работать с компьютером. Их главная особенность – они находятся вне системного блока и подключены к нему снаружи.

Устройство системного блока

Системный блок является главное устройство компьютера. Только взглянув внутрь компьютера, мы сможем разобраться, из чего состоит компьютер.

  1. Блок питания.
  2. Оперативная память.
  3. Накопитель на жестком магнитном диске.
  4. Устройство чтения гибких магнитных дисков.
  5. Устройство чтения оптических дисков.
  6. Дополнительные устройства.

Пункты с 1-го по 5-й являются обязательными, их вы обнаружите в любом системном блоке. Остальных может и не быть или они могут быть в виде периферийных устройств, то есть подключаться снаружи.

Из чего состоит компьютер:

Теперь давайте более детально расскажу про каждую составляющую.

Блок питания

Это устройство компьютера немаловажный компонент в компьютере! Сокращенное название – БП. Основная характеристика – максимальная выходная мощность. Измеряется в Ватах (Вт), по-английски Watt (W). Для домашнего компьютера мощность БП обычно равна 350-450 Вт, для мощного игрового 600 Вт или больше.

Важность данного компонента часто недооценивается. При покупке компьютера вам могут предложить сэкономить, установив менее качественный блок питания. Это делать крайне не рекомендуется, так как БП является источником энергии для всех остальных узлов системы. Некачественный БП при поломке или какой-либо проблеме в электросети может вывести из строя другие узлы системы. К тому же, на дешевых и некачественных моделях часто указаны значения мощности далекие от действительности. Именно поэтому блок питания компьютера должен быть от проверенного производителя и достаточной мощности.

Варианты названия: материнка, мать, главная плата, MotherBoard, MainBoard. Именно к материнской плате подключаются все устройства, которые находятся внутри системного блока. Она является главной платой в системе. Остановимся подробнее на её содержимом:

  • Сокет (Socket) – разъём для подключения процессора. В зависимости от того какой сокет содержит ваша материнская плата, вы можете использовать только определенную группу процессоров.
  • Слоты для подключения модуля оперативной памяти. В персональных компьютерах их количество разнится от 2-х до 4-х. По типу они бывают: DDR, DDR2 и DDR3. На современных материнских платах возможно наличие слотов сразу двух типов.
  • Разъемы для подключения устройств, хранения данных. Для обычных ПК они бывают двух видов: широкий продолговатый разъем с 39-ю штырьками в два ряда и небольшой разъём почти прямоугольной формы с «г» — образной серединой. Первый – это параллельный интерфейс, называемый IDE (Integrated Drive Electronics) второе его название PATA (Parallel ATAttachment). Второй – это последовательный интерфейс SATA (Serial ATAttachment).
  • Слоты расширения. Это разъёмы, которые применяются для подключения дополнительных устройств. Они представляют собой продолговатый разъём, расположенный горизонтально в левой нижней части материнской платы. Именно сюда вставляется видеокарта, сетевая карта и другие устройства. Данные разъемы обычно соединяют устройства с материнской платой по интерфейсу PCI (Peripheral component tinterconnect - взаимосвязь периферийных компонентов) или его производными PCI Express и др.
  • Чипсет. Это набор микросхем, которые обеспечивают связь компонентов системы между собой. Обычно его можно разделить на, так называемые, северный и южный мост. Северный мост – это контроллер памяти, то есть деталь, которая обеспечивает обмен данных между центральным процессором и оперативной памятью. В современных платформах контроллер памяти может быть интегрирован прямо в центральный процессор. Южный мост – это контроллер ввода-вывода, деталь, которая обеспечивает связь процессора с такими интерфейсами как SATA, IDE, PCI, USB и другие.

Выше перечислены обязательные компоненты материнской платы, они объединяются еще и тем, что видны только изнутри системного блока.

Если взглянуть на системный блок сзади, то можно увидеть множество разъемов, которые физически также находятся на материнской плате. Они расположены в левой части, примерно посередине и заключены в металлическую «рамочку». Обращаю внимание, что в Вашем компьютере может не быть многих из них, это зависит от конкретной модели материнской платы.

  • Разъём подключения мышки и клавиатуры. Это два круглых разъёма, один фиолетового (для клавиатуры) и второй зеленого (для мышки) цвета. Этот интерфейс носит название PS/2 (в разговорной речи PS пополам).
  • LPT-порт. Данный параллельный интерфейс изобретался в качестве принтерного порта и активно применялся других целей. На сегодняшний день в материнских платах, все реже можно встретить его на борту.
  • COM-порт. Еще один устаревающий последовательный интерфейс. Данный порт активно используются как интерфейс для настройки оборудования.
  • USB (Universal Serial Bus – универсальная параллельная шина). Это наиболее популярный способ подключения периферийных устройств к современному ПК. Применяется для подключения самых разных девайсов: мышки, клавиатуры, сканера, принтера, переносных винчестеров, флешек и др.
  • Видео разъём VGA, DVI. Это интерфейсы для подключения монитора. Если на Вашей материнской плате есть такой разъём, то она имеет встроенный видео адаптер. Его будет вполне достаточно для работы, однако если за компьютером вы намерены играть в игры, то понадобится дискретная (отдельная) видео карта, которая будет вставляться в специальный слот расширения.
  • Сетевой разъем RJ-45. Интерфейс применяется для подключения компьютера к локальной вычислительной сети стандарта Ethernet.
  • Группа звуковых разъемов Jack 3.5. Применяется для подключения акустической системы и микрофона. Зеленый разъем для подключения колонок и розовый для микрофона.

Теперь предлагаю уточнить один важный момент. Если какой-либо разъём расположен в вертикальной «рамочке» в середине системного блока, то устройство, к которому он относится, встроено в Вашу материнскую плату. Если у вас имеется дискретная видео карта, модем или что-либо еще, то оно подключено к материнской плате через слот расширения и разъем самого устройства будет расположен ниже горизонтально.

Центральное процессорное (обрабатывающее) устройство (ЦПУ), по-английски CPU (Central processing unit). Это микросхема, которая выполняет команды программного обеспечения, производит вычисления, выполняет операции логического сравнения, грубо говоря «думает». Поэтому процессор часто называют «мозгом» компьютера.

Основными характеристиками устройства являются: разрядность, тактовая частота, энергопотребление, количество ядер, архитектура.

Разрядность указывает на количество информации, передаваемой за единицу времени по шине данных. Бывает 8, 16, 32 и 64 бита. Соответственно, чем выше разрядность, тем быстрее работает процессор. Тактовая частота показывает, какое количество тактов (элементарных операций) выполняет ЦП за единицу времени. Энергопотребление указывает, какое количество тепла выделяет процессор при работе.

Некоторое время назад два основных производителя процессоров – Intel и AMD – в своей конкуренции старались как можно больше увеличить тактовую частоту своих процессоров. Но столкнулись с тем, что после преодоления некоторого порога, начинает нелинейно увеличиваться энергопотребление и теплоотдача. Решением были многоядерные процессоры. Это значит, что в одном ЦП располагается несколько кристаллов, которые распределяют вычислительную нагрузку между собой. Самое широкое распространение сейчас имеют 2-х ядерные устройства, хотя это не предел, существуют процессоры из 4-х и более ядер.

Архитектура показывает, как организована работа внутри процессора. Хотя данный параметр не прибавляет желанных гигагерц, но может очень существенно влиять на производительность. Толковая организация труда, как известно, многого стоит.

Оперативная память

Оперативная память – это оперативное запоминающее устройство (ОЗУ), по-английски – RAM (Random Access Memory – память с произвольным доступом). Эта область памяти является энергозависимой, то есть без «питания» данные в ней не сохраняются. В оперативную память помещается информация, которую должен обработать процессор в реальном времени. Во время работы оперативная память содержит в себе данные операционной системы и работающих программ пользователя.

Актуальными сегодня являются модули оперативной памяти стандарта SDRAM DDR3, до них были SDRAM DDR 2 и SDRAM DDR 1 (их конечно, тоже еще можно встретить). Каждое новое поколение имело ряд серьезных преимуществ перед предшественниками: повышалась пропускная способность, уменьшалось энергопотребление.

Жесткий диск

Накопитель на жестких магнитных дисках, по-английски HDD (Hard Disk Drive) – это постоянное запоминающее устройство (ПЗУ). Данное устройство компьютера также называют винчестер или жесткий диск.

Данный тип памяти не энергонезависимый, то есть данные сохраняются в памяти после отключения питания. Именно это устройство компьютера содержит все данные пользователя: фильмы, музыку, документы и все остальное.

Жесткий диск представляет собой несколько круглых пластин, которые вращаются на шпинделе. Эти пластины покрыты ферромагнитным материалом, разделенным на множество ячеек, каждая из которых хранит в себе один бит двоичной информации. Считывает и записывает информацию специальная головка, которая перемещается в нужное место над поверхностью диска.

Отличаются они по объему хранимой информации, способу подключения, форм-фактору, скорости вращения шпинделя.

Как упоминалось раньше, способ подключения бывает двух видов: IDE и SATA. Первый уже почти не используется, так как последовательный SATA быстрее и удобнее. По форм-фактору HDD бывают 5,25 (прекращено производство) ; 3,5, 2,5 дюйма, 1,8 дюйма, 1,3 дюйма, 1 дюймов и 0,85 дюйма, это размер пластин, которые содержат информацию. В настольных ПК обычно применяются 3,5 HDD, в ноутбуках 2,5. Чем быстрее скорость вращения – тем выше скорость записи и чтения данных. В 3,5 моделях обычно скорость равна 7200 об/мин, в 2,5 — 5400 об/мин, хотя бывают и более быстрые модели винчестеров для ноутбуков.

Дисковод гибких магнитных дисков

Дисковод для чтения гибких магнитных дисков, по-английски FDD (Floppy Disk Driver), также называется Floppy или просто флоппик. Это устройство для чтения дискет. Грубо говоря, дискета представляет собой миниатюрный винчестер, только вместо металлических пластин гибкое пленочное основание, а головка и мотор привода находятся в дисководе. Размер дискет 3,5 дюйма (давно использовались дискеты 5,25 дюйма). Объём дискеты 1,44 Мб. У дискет, кроме небольшого объема, есть серьезный недостаток – они очень не надежны, информация на них может стать не читаемая из-за воздействия магнитных полей или удара. Из-за этого, данный вид носителей почти не используется сегодня.

Привод оптических дисков

Оптические носители представляют собой пластиковые диски, покрытые специальным слоем. Диск освещается лазером, а из отраженного света считывается информация. Оптические диски бывают нескольких видов: CD (Compact Disk), DVD (Digital Versatile Disc – цифровой многоцелевой диск), Blu-ray Disc (от английского Blue Ray – синий луч).CD и DVD диски бывают трех видов: ROM (Read Only Memory – только для чтения), R (Recordable – записываемый), RW (Re-Writable – перезаписываемый).

Приводы (дисководы) для чтения оптических дисков называются, так же как и носители. Причем привод называется аббревиатурой последнего по очереди поколения, которое он способен читать. То есть DVD-ROM привод читает DVD и CD диски, а CD привод читает только CD диски. Также дисководы делятся на те, которые могут только читать (CD/DVD ROM) и дисководы, которые могут читать и записывать диски (CD/DVD RAM).

Объем CD-диска 700 Мб. DVD-диски могут быть однослойными, двухслойными и двухсторонними, объем обычного 4,7 Гб, двухслойного 8,5 Гб, двухстороннего 9,4 Гб, двухстороннего двухслойного 17,08 Гб (последний встречается редко). Blu-ray Disc способен хранить 25 Гб, двухслойный 50 Гб.

Итак, мы только что рассмотрели основные компоненты, из чего состоит компьютер. Но не надо забывать об устройствах, которые не всегда есть в компьютере.

Дополнительные устройства (периферийные устройства)

В качестве дополнительных устройств могут выступать устройства, которые вставляются в материнскую плату. Дискретным (на отдельной плате) может быть видео адаптер, звуковой адаптер, сетевой адаптер,wi-fi, модем, USB-контроллер и многие другие устройства.

Надеюсь, данная статья пояснила вам в полной мере, из чего состоит компьютер. И после её прочтения мир hadware (так называется компьютерное «железо»), станет немного ближе и понятнее для моих читателей.